Research article Special Issues

Bearing fault diagnosis based on Gramian angular field and DenseNet


  • Received: 20 August 2022 Revised: 09 September 2022 Accepted: 20 September 2022 Published: 26 September 2022
  • Rolling bearings are the core components of mechanical and electrical systems. A practical fault diagnosis scheme is the key to ensure operational safety. There are excessive characteristic parameters with remarkable randomness and severe signal coupling in the rolling bearing operation, which makes the fault diagnosis to be challenging. To deal with this problem, the Gramian angular field (GAF) and DenseNet are combined to perform feature extraction and fault diagnosis. The GAF can convert 1-dimensional time series into an image, which can guarantee the completeness of feature information without temporal dependence. The GAF images are then trained by using the DenseNet to generate a data set network. In this process, the transfer learning (TL), which can solve the problem of insufficient samples, is integrated to the DenseNet to enhance its extensibility. The comparative simulations are carried out to illustrate the effectiveness of the proposed method.

    Citation: Yajing Zhou, Xinyu Long, Mingwei Sun, Zengqiang Chen. Bearing fault diagnosis based on Gramian angular field and DenseNet[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 14086-14101. doi: 10.3934/mbe.2022656

    Related Papers:

  • Rolling bearings are the core components of mechanical and electrical systems. A practical fault diagnosis scheme is the key to ensure operational safety. There are excessive characteristic parameters with remarkable randomness and severe signal coupling in the rolling bearing operation, which makes the fault diagnosis to be challenging. To deal with this problem, the Gramian angular field (GAF) and DenseNet are combined to perform feature extraction and fault diagnosis. The GAF can convert 1-dimensional time series into an image, which can guarantee the completeness of feature information without temporal dependence. The GAF images are then trained by using the DenseNet to generate a data set network. In this process, the transfer learning (TL), which can solve the problem of insufficient samples, is integrated to the DenseNet to enhance its extensibility. The comparative simulations are carried out to illustrate the effectiveness of the proposed method.



    加载中


    [1] Q. Ni, J. Ji, K. Feng, B. Halkon, A novel correntropy-based band selection method for the fault diagnosis of bearings under fault-irrelevant impulsive and cyclostationary interferences, Mech. Syst. Sig. Process., 153 (2021), 107498. https://doi.org/10.1016/j.ymssp.2020.107498 doi: 10.1016/j.ymssp.2020.107498
    [2] R. L. Larson, R. C. Searle, M. C. Kleinrock, H. Schouten, R. T. Bird, D. F. Naar, et al., Roller-bearing tectonic evolution of the Juan Fernandez microplate, Nature, 356 (1992), 571–576. https://doi.org/10.1038/356571a0 doi: 10.1038/356571a0
    [3] T. Wang, Z. Liu, G. Lu, J. Liu, Temporal-spatio graph based spectrum analysis for bearing fault detection and diagnosis, IEEE Trans. Ind. Electron., 68 (2021), 2598–2607. https://doi.org/10.1109/TIE.2020.2975499 doi: 10.1109/TIE.2020.2975499
    [4] A. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance, Mech. Syst. Sig. Process., 20 (2006), 1483–1510. https://doi.org/10.1016/j.ymssp.2005.09.012 doi: 10.1016/j.ymssp.2005.09.012
    [5] Q. Ni, J. Ji, K. Feng, B. Halkon, A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis, Mech. Syst. Sig. Process., 164 (2022), 108216. https://doi.org/10.1016/j.ymssp.2021.108216 doi: 10.1016/j.ymssp.2021.108216
    [6] T. Wang, G. Lu, P. Yan, A novel statistical time-frequency analysis for rotating machine condition monitoring, IEEE Trans. Ind. Electron., 67 (2020), 531–541. https://doi.org/10.1109/TIE.2019.2896109 doi: 10.1109/TIE.2019.2896109
    [7] S. Yang, Z. Liu, G. Lu, Early change detection in dynamical bearing degradation process based on hierarchical graph model and adaptive inputs weighting fusion, IEEE Trans. Ind. Electron., 17 (2021), 3186–3196. https://doi.org/10.1109/TⅡ.2020.3007653 doi: 10.1109/TⅡ.2020.3007653
    [8] V. Sugumaran, V. Muralidharan, K. Ramachandran, Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing, Mech. Syst. Sig. Process., 21 (2007), 930–942. https://doi.org/10.1016/j.ymssp.2006.05.004 doi: 10.1016/j.ymssp.2006.05.004
    [9] J. Wang, S. Liu, R. X. Gao, R. Yan, Current envelope analysis for defect identification and diagnosis in induction motors, J. Manuf. Syst., 31 (2012), 380–387. https://doi.org/10.1016/j.jmsy.2012.06.005 doi: 10.1016/j.jmsy.2012.06.005
    [10] N. K. Verma, V. K. Gupta, M. Sharma, R. K. Sevakula, Intelligent condition based monitoring of rotating machines using sparse auto-encoders, in 2013 IEEE Conference on Prognostics and Health Management (PHM), (2013), 1–7. https://doi.org/10.1109/ICPHM.2013.6621447
    [11] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313 (2006), 504–507. https://doi.org/10.1126/science.1127647 doi: 10.1126/science.1127647
    [12] B. Buxton, D. Goldston, C. Doctorow, M. Waldrop, Big data: science in the petabyte era, Nature, 455 (2008). Available from: https://www.mendeley.com/catalogue/3c1a840c-af73-3ada-a109-ac33fdead72e/
    [13] Y. Lei, H. R. Karimi, X. Chen, A novel self-supervised deep LSTM network for industrial temperature prediction in aluminum processes application, Neurocomputing, 502 (2022), 177–185. https://doi.org/10.1016/j.neucom.2022.06.080 doi: 10.1016/j.neucom.2022.06.080
    [14] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: efficient channel attention for deep convolutional neural networks, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 11531–11539. https://doi.org/10.1109/CVPR42600.2020.01155
    [15] H. Ahmed, M. Wong, A. Nandi, Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features, Mech. Syst. Sig. Process., 99 (2018), 459–477. https://doi.org/10.1016/j.ymssp.2017.06.027 doi: 10.1016/j.ymssp.2017.06.027
    [16] P. Jayaswal, S. Verma, A. Wadhwani, Development of EBP-artificial neural network expert system for rolling element bearing fault diagnosis, J. Vib. Control, 17 (2011), 1131–1148. https://doi.org/10.1177/1077546310361858 doi: 10.1177/1077546310361858
    [17] O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier, S. Verstockt, et al., Convolutional neural network based fault detection for rotating machinery, J. Sound Vib., 377 (2016), 331–345. https://doi.org/10.1016/j.jsv.2016.05.027 doi: 10.1016/j.jsv.2016.05.027
    [18] S. G. Kumbhar, E. Sudhagar, An integrated approach of adaptive neuro-fuzzy inference system and dimension theory for diagnosis of rolling element bearing, Measurement, 166 (2020), 108266. https://doi.org/10.1016/j.measurement.2020.108266 doi: 10.1016/j.measurement.2020.108266
    [19] A. Ajagekar, F. You, Quantum computing assisted deep learning for fault detection and diagnosis in industrial process systems, Comput. Chem. Eng., 143 (2020), 107119. https://doi.org/10.1016/j.compchemeng.2020.107119 doi: 10.1016/j.compchemeng.2020.107119
    [20] W. Mao, L. Ding, S. Tian, X. Liang, Online detection for bearing incipient fault based on deep transfer learning, Measurement, 152 (2020), 107278. https://doi.org/10.1016/j.measurement.2019.107278 doi: 10.1016/j.measurement.2019.107278
    [21] M. Zhao, M. Kang, B. Tang, M. Pecht, Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes, IEEE Trans. Ind. Electron., 65 (2018), 4290–4300. https://doi.org/10.1109/TIE.2017.2762639 doi: 10.1109/TIE.2017.2762639
    [22] D. Wu, S. Zhang, H. Zhao, X. Yang, A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing, IEEE Access, 6 (2018), 35042–35056. https://doi.org/10.1109/ACCESS.2018.2834540 doi: 10.1109/ACCESS.2018.2834540
    [23] W. Yu, C. Zhao, Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net, IEEE Trans. Control Syst. Technol., 28 (2020), 1083–1091. https://doi.org/10.1109/TCST.2019.2897946 doi: 10.1109/TCST.2019.2897946
    [24] Z. Pu, C. Li, S. Zhang, Y. Bai, Fault diagnosis for wind turbine gearboxes by using deep enhanced fusion network, IEEE Trans. Instrum. Meas., 70 (2021), 2501811. https://doi.org/10.1109/TIM.2020.3024048 doi: 10.1109/TIM.2020.3024048
    [25] Y. Yang, H. Zheng, Y. Li, M. Xu, Y. Chen, A fault diagnosis scheme for rotating machinery using hierarchical symbolic analysis and convolutional neural network, ISA Trans., 91 (2019), 235–252. https://doi.org/10.1016/j.isatra.2019.01.018 doi: 10.1016/j.isatra.2019.01.018
    [26] V. Tran, B. Yang, F. Gu, A. Ball, Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis, Mech. Syst. Sig. Process., 38 (2013), 601–614. https://doi.org/10.1016/j.ymssp.2013.02.001 doi: 10.1016/j.ymssp.2013.02.001
    [27] G. Huang, Z. Liu, L. Maaten, K. Q. Weinberger, Densely connected convolutional networks, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 4700–4708. https://doi.org/10.1109/CVPR.2017.243
    [28] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng., 22 (2010), 1345–1359. https://doi.org/10.1109/TKDE.2009.191 doi: 10.1109/TKDE.2009.191
    [29] K. Weiss, T. M. Khoshgoftaar, D. Wang, A survey of transfer learning, J. Big Data, 3 (2016), 9. https://doi.org/10.1186/s40537-016-0043-6 doi: 10.1186/s40537-016-0043-6
    [30] G. Wilson, D. J. Cook, A survey of unsupervised deep domain adaptation, ACM Trans. Intell. Syst. Technol., 11 (2020), 1–46. https://doi.org/10.1145/3400066 doi: 10.1145/3400066
    [31] K. A. Loparo, Case western reserve university bearing data center, Bear. Vib. Data Sets, Case West. Reserve Univ., 2012 (2012), 22–28.
    [32] W. A. Smith, R. B. Randall, Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study, Mech. Syst. Sig. Process., 64–65 (2015), 100–131. https://doi.org/10.1016/j.ymssp.2015.04.021 doi: 10.1016/j.ymssp.2015.04.021
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1732) PDF downloads(205) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog