Research article Special Issues

Effect of delay in diagnosis on transmission of COVID-19

  • Received: 25 February 2020 Accepted: 08 March 2020 Published: 11 March 2020
  • The outbreak of COVID-19 caused by SARS-CoV-2 in Wuhan and other cities of China is a growing global concern. Delay in diagnosis and limited hospital resources lead to a rapid spread of COVID-19. In this study, we investigate the effect of delay in diagnosis on the disease transmission with a new formulated dynamic model. Sensitivity analyses and numerical simulations reveal that, improving the proportion of timely diagnosis and shortening the waiting time for diagnosis can not eliminate COVID-19 but can effectively decrease the basic reproduction number, significantly reduce the transmission risk, and effectively prevent the endemic of COVID-19, e.g., shorten the peak time and reduce the peak value of new confirmed cases and new infection, decrease the cumulative number of confirmed cases and total infection. More rigorous prevention measures and better treatment of patients are needed to control its further spread, e.g., increasing available hospital beds, shortening the period from symptom onset to isolation of patients, quarantining and isolating the suspected cases as well as all confirmed patients.

    Citation: Xinmiao Rong, Liu Yang, Huidi Chu, Meng Fan. Effect of delay in diagnosis on transmission of COVID-19[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2725-2740. doi: 10.3934/mbe.2020149

    Related Papers:

    [1] Silpak Biswas, Rintu Das, Ena Ray Banerjee . Role of free radicals in human inflammatory diseases. AIMS Biophysics, 2017, 4(4): 596-614. doi: 10.3934/biophy.2017.4.596
    [2] Andrew K. Martusevich, Alexander G. Galka, Konstantin A. Karuzin, Alexander N. Tuzhilkin, Svetlana L. Malinovskaya . Cold helium plasma as a modifier of free radical processes in the blood: in vitro study. AIMS Biophysics, 2021, 8(1): 34-40. doi: 10.3934/biophy.2021002
    [3] Nily Dan . Bilayer degradation in reactive environments. AIMS Biophysics, 2017, 4(1): 33-42. doi: 10.3934/biophy.2017.1.33
    [4] Mikayel Ginovyan, Svetlana Hovhannisyan, Hayarpi Javrushyan, Gohar Sevoyan, Zaruhi Karabekian, Narine Zakaryan, Naira Sahakyan, Nikolay Avtandilyan . Screening revealed the strong cytotoxic activity of Alchemilla smirnovii and Hypericum alpestre ethanol extracts on different cancer cell lines. AIMS Biophysics, 2023, 10(1): 12-22. doi: 10.3934/biophy.2023002
    [5] Domenico Lombardo . Scientific advance in biomembranes and biomimetic membranes of biophysical interest. AIMS Biophysics, 2022, 9(4): 341-345. doi: 10.3934/biophy.2022028
    [6] Gérald Gaibelet, François Tercé, Sophie Allart, Chantal Lebrun, Xavier Collet, Nadège Jamin, Stéphane Orlowski . Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell. AIMS Biophysics, 2017, 4(1): 121-151. doi: 10.3934/biophy.2017.1.121
    [7] Daniela Meleleo, Cesare Sblano . Influence of cholesterol on human calcitonin channel formation. Possible role of sterol as molecular chaperone. AIMS Biophysics, 2019, 6(1): 23-38. doi: 10.3934/biophy.2019.1.23
    [8] Mostean Bahreinipour, Hajar Zarei, Fariba Dashtestani, Jamal Rashidiani, Khadijeh Eskandari, Seyed Ali Moussavi Zarandi, Susan Kabudanian Ardestani, Hiroshi Watabe . Radioprotective effect of nanoceria and magnetic flower-like iron oxide microparticles on gamma radiation-induced damage in BSA protein. AIMS Biophysics, 2021, 8(2): 124-142. doi: 10.3934/biophy.2021010
    [9] Marcelina Cardoso Dos Santos, Cyrille Vézy, Hamid Morjani, Rodolphe Jaffol . Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy. AIMS Biophysics, 2017, 4(3): 438-450. doi: 10.3934/biophy.2017.3.438
    [10] Thi Minh Ngoc Ta, Cynthia Romero-Guido, Thi Hanh Phan, Hai Dang Tran, Hanh Tam Dinh, Yves Waché . Encapsulation of flavours into Yarrowia lipolytica active yeast cells. Fluorescence study of the lipid droplets morphology and steryl/sterol balance during the shock. AIMS Biophysics, 2022, 9(3): 257-270. doi: 10.3934/biophy.2022022
  • The outbreak of COVID-19 caused by SARS-CoV-2 in Wuhan and other cities of China is a growing global concern. Delay in diagnosis and limited hospital resources lead to a rapid spread of COVID-19. In this study, we investigate the effect of delay in diagnosis on the disease transmission with a new formulated dynamic model. Sensitivity analyses and numerical simulations reveal that, improving the proportion of timely diagnosis and shortening the waiting time for diagnosis can not eliminate COVID-19 but can effectively decrease the basic reproduction number, significantly reduce the transmission risk, and effectively prevent the endemic of COVID-19, e.g., shorten the peak time and reduce the peak value of new confirmed cases and new infection, decrease the cumulative number of confirmed cases and total infection. More rigorous prevention measures and better treatment of patients are needed to control its further spread, e.g., increasing available hospital beds, shortening the period from symptom onset to isolation of patients, quarantining and isolating the suspected cases as well as all confirmed patients.




    [1] World Health Organization, Pneumonia of Unknown Cause-China, 2020. Available from: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/.
    [2] World Health Organization, Clinical Management of Severe Acute Respiratory Infection When Infection is Suspected, 2020. Available from: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-/coronavirus-(ncov)-infection-is-suspected.
    [3] National Health Commission of the People's Republic of China, Situation Report of the Pneumonia Cases Caused by the Novel Coronavirus, 2020. Available from: http://www.nhc.gov.cn/xcs/yqfkdt/202002/3db09278e3034f289841300ed09bd0e1.shtml.
    [4] Health Commission of Hubei Province, Prevention Measures of Wuhan, 2020. Available from: http://wjw.hubei.gov.cn/fbjd/dtyw/202001/t20200123_2014421.shtml.
    [5] National Health Commission of the People's Republic of China, Data of Confirmed Cases on COVID-19, 2020. Available from: http://www.nhc.gov.cn/xcs/xxgzbd/gzbd_index. shtml.
    [6] The State Council, the People's Republic of China, Annunciate of Prevention and Control Headquarters for 2019-nCoV Pneumonia, 2020. Available from: http://www.gov.cn/xinwen/2020-01/23/content_5471751.htm.
    [7] National Health Commission of the People's Republic of China, Prevention and Control of Novel Coronavirus Pneumonia (4th edition), 2020. Available from: http://www.nhc.gov.cn/xcs/zhengcwj/202002/573340613ab243b3a7f61df260551dd4.shtml.
    [8] D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis., 91 (2020), 264-266.
    [9] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395 (2020), 497-506.
    [10] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med., (2020).
    [11] T. E. Carpenter, J. M. O'Brien, A. D. Hagerman, B. A. McCarl, Epidemic and economic impacts of delayed detection of foot-and-mouth disease: a case study of a simulated outbreak in California, J. Vet. Diagn. Invest., 23 (2010), 26-33.
    [12] P. W. Uys, R. Warren, P. D. van Helden, M. Murray, T. C. Victor, Potential of rapid diagnosis for controlling drug-susceptible and drug-resistant tuberculosis in communities where Mycobacterium tuberculosis infections are highly prevalent, J. Clin. Mircrobiol., 47 (2009), 1484-1490.
    [13] I. N. Okeke, R. S. Manning, T. Pfeiffer, Diagnostic schemes for reducing epidemic size of African viral hemorrhagic fever outbreaks, J. Infect. Dev. Countr., 8 (2014), 1148-1159.
    [14] P. K. Drain, E. P. Hyle, F. Noubary, K. A. Freedberg, D. Wilson, W. R. Bishai, et al., Diagnostic point-of-care tests in resource-limited settings, Lancet. Infect. Dis., 14 (2014), 239-249.
    [15] D. Chowell, C. Castillo-Chavez, S. Krishna, X. Qiu, K. S. Anderson, Modelling the effect of early detection of Ebola, Lancet. Infect. Dis., 15 (2015), 148-149.
    [16] P. Nouvellet, T. Garske, H. L. Mills, G. Nedjati-Gilani, W. Hinsley, I. M. Blake, et al., The role of rapid diagnostics in managing Ebola epidemics, Nature, 528 (2015), S109.
    [17] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462.
    [18] N. Imai, I. Dorigatti, A. Cori, S. Riley, N. M. Ferguson, Estimating the potential total number of novel Coronavirus (2019-nCoV) cases in Wuhan City, China, Imperial College London, 2020. Available from: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/.
    [19] B. Tang, F. Xia, S. Tang, N. L. Bragazzi, Q. Li, X. Sun, et al., The evolution of quarantined and suspected cases determines the final trend of the 2019-nCoV epidemics based on multi-source data analyses, 2020. Available from: https://ssrn.com/abstract=3537099.
    [20] J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395 (2020), 689-697.
    [21] J. M. Read, J. R. Bridgen, D. A. Cummings, C. P. Jewell, Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions, medRxiv, 2020.
    [22] Y. Bai, X. Nie, C. Wen, Epidemic prediction of 2019-nCoV in Hubei Province and comparison with SARS in Guangdong Province. Available at SSRN 3531427 (2020).
    [23] S. W. Park, B. M. D. Bolker, D. J. D. Champredon, M. Earn, J. Li, S. Weitz, et al., Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (2019-nCoV) outbreak, medRxiv, 2020.
    [24] S. Zhao, S. S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: a data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388.
    [25] I. I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M. U. G. Kraemer, K. Kha, Pneumonia of unknown etiology in Wuhan, China: potential for international spread via commercial air travel, J. Travel Med., 2020.
    [26] S. Lai, I. Bogoch, N. Ruktanonchai, A. Watts, Y. Li, J. Yu, et al., Assessing spread risk of Wuhan novel coronavirus within and beyond China, January-April 2020: a travel network-based modelling study, medRxiv, 2020.
    [27] H. Tian, Y. Liu, Y. Li, M. U. G. Kraemer, B. Chen, C. H. Wu, et al., Early evaluation of the Wuhan City travel restrictions in response to the 2019 novel coronavirus outbreak, medRxiv, 2020.
    [28] S. Ai, G. Zhu, F. Tian, H. Li, Y. Gao, Y. Wu, et al., Population movement, city closure and spatial transmission of the 2019-nCoV infection in China, medRxiv, 2020.
    [29] T. Liu, J. X. Hu, M. Kang, L. Lin, H. Zhong, J. Xiao, et al., Transmission dynamics of 2019 novel coronavirus (2019-nCoV), bioRxiv, 2020.
    [30] WUHAN, CHINA, Population, The information of population in Wuhan, 2020. Available from: http://english.wh.gov.cn/whgk_3581/dqrk/.
    [31] P. Van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
    [32] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196.
    [33] Italy blasts virus panic as it eyes new testing criteria, 2020. Available from: https://world.huanqiu.com/article/3xDoSjd87PM.
    [34] Diagnostic criteria of COVID-19 in Japan, 2020. Available from: https://www.mhlw.go.jp/stf/seisakunitsuite/newpage_00006.html.
  • This article has been cited by:

    1. Kobra Hajizadeh, Kamal Hajisharifi, Hasan Mehdian, Morphological risk assessment of cold atmospheric plasma-based therapy: bone marrow mesenchymal stem cells in treatment zone proximity, 2019, 52, 0022-3727, 495203, 10.1088/1361-6463/ab3f65
    2. Suzan Kastamonuluoğlu, Kemal Büyükgüzel, Ender Büyükgüzel, Murray Isman, The Use of Dietary Antifungal Agent Terbinafine in Artificial Diet and Its Effects on Some Biological and Biochemical Parameters of the Model Organism Galleria mellonella (Lepidoptera: Pyralidae), 2020, 113, 0022-0493, 1110, 10.1093/jee/toaa039
    3. Jose Javier Garcia-Medina, Vicente Zanon-Moreno, Maria Dolores Pinazo-Duran, Elisa Foulquie-Moreno, Elena Rubio-Velazquez, Ricardo P. Casaroli-Marano, Monica del-Rio-Vellosillo, 2020, 9780128157763, 49, 10.1016/B978-0-12-815776-3.00005-X
    4. Edward Huang, Townshend White, Beibei Wang, Huanhuan Shi, Jiayang Liu, Disinfection of Escherichia coli by a Reactive Electrochemical Membrane System Involving Activated Carbon Fiber Cloth (ACFC), 2019, 11, 2073-4441, 430, 10.3390/w11030430
    5. Adi Prayitno, RA Oetari, Idin Shahiddin, Aldissa Yova Elmanda, Anita Dwi Septiarini, Hasriyani Hasriyani, Luky Dharmayanti, Yuneka Saristiana, Yunita Dian Permata Sari, α-Mangosteen from Garcinia Mangostana Linn and its Effect in Blood Insulin and Sugar Levels in Hyperglycemic Rat, 2021, 12, 13098578, em00770, 10.29333/jcei/9767
    6. Sabah Mohammad K, Adnan Saleem Jar, Taghleb Muhammad-F, Antimicrobial and Lipid Peroxidation Inhibition Potential of Ziziphus Spina-christi (Sedr), A Jordanian Medicinal Plant, 2019, 19, 17273048, 131, 10.3923/jbs.2019.131.136
    7. Eleazar Chukwuemeka Anorue, Grace Nneka Onwubiko, Henry Amaechi Onwubiko, Chinweike Norman Asogwa, Oxidative effects of cyanogenic glycosides residuals in cassava products on human haemoglobin, 2020, 22124292, 100846, 10.1016/j.fbio.2020.100846
    8. The analyze of lung’s GSH number in rats exposed by cigarette smoke and inducted by rambutan peel extract, 2018, 983, 1742-6588, 012179, 10.1088/1742-6596/983/1/012179
    9. Joanna Dulińska-Litewka, Yoav Sharoni, Przemysław Hałubiec, Agnieszka Łazarczyk, Oskar Szafrański, James A. McCubrey, Bartosz Gąsiorkiewicz, Piotr Laidler, Torsten Bohn, Recent Progress in Discovering the Role of Carotenoids and Their Metabolites in Prostatic Physiology and Pathology with a Focus on Prostate Cancer—A Review—Part I: Molecular Mechanisms of Carotenoid Action, 2021, 10, 2076-3921, 585, 10.3390/antiox10040585
    10. Murside Ayse Demirel, Mehmet Eray Alcigir, Ozcan Ozkan, Merve Biskin Turkmen, The effects of antivenom administrations on the brain tissue of experimentally envenomed pregnant rats and their pups with Androctonus crassicauda scorpion venom during organogenesis period, 2021, 200, 00410101, 13, 10.1016/j.toxicon.2021.06.011
    11. Anbu S, Boomiga S, Suresh A, Padma J, Phytochemical Screening and Antimicrobial Activity of Ziziphus oenoplia Seed Extract, 2022, 0974-360X, 615, 10.52711/0974-360X.2022.00101
    12. Masoud Soheili, Azam Alinaghipour, Mahmoud Salami, Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations, 2022, 301, 00243205, 120605, 10.1016/j.lfs.2022.120605
    13. Elizabeth M. Bolitho, Carlos Sanchez-Cano, Huayun Shi, Paul D. Quinn, Maria Harkiolaki, Cinzia Imberti, Peter J. Sadler, Single-Cell Chemistry of Photoactivatable Platinum Anticancer Complexes, 2021, 143, 0002-7863, 20224, 10.1021/jacs.1c08630
    14. R. Jamshidi, K. Hajizadeh, Cold atmospheric plasma risk assessment: stem cells, 2020, 7, 23760060, 93, 10.15406/jlprr.2020.07.00236
    15. Abimbola Motunrayo Folami, Samuel Ayodele Iwarere, Feroz Mahomed Swalaha, 2021, Chapter 791, 978-3-031-12917-9, 177, 10.1007/698_2021_791
    16. Shangtao Liang, Hui Lin, Mussie Habteselassie, Qingguo Huang, Electrochemical inactivation of bacteria with a titanium sub-oxide reactive membrane, 2018, 145, 00431354, 172, 10.1016/j.watres.2018.08.010
    17. Didik Priyandoko, Wahyu Widowati, Hanna Sari Widya Kusuma, Ervi Afifah, Cahyaning Riski Wijayanti, Cintani Dewi Wahyuni, Amannah Mutmainnah Idris, Rizka Amelia Putdayani, Rizal Rizal, 2021, Antioxidant Activity of Green Tea Extract and Myricetin, 978-1-6654-4181-0, 1, 10.1109/InHeNce52833.2021.9537285
    18. Dong Sub Kim, Hyo‐Jung Lee, Deok Yong Sim, Ji Eon Park, Youngsang Park, Bonglee Kim, Bumsang Shim, Sung‐Hoon Kim, The underlying hepatoprotective mechanism of PKC #963 in alcohol or carbon tetrachloride induced liver injury via inhibition of iNOS , COX ‐2, and p‐STAT3 and enhancement of SOD and catalase , 2023, 37, 0951-418X, 505, 10.1002/ptr.7630
    19. K. Dondoladze, M. Nikolaishvili, T. Museliani, G. Jikia, EFFECT OF RADIATION ON AGING PROCESSES AND TELOMERE LENGTH, 2022, 27, 23048336, 107, 10.33145/2304-8336-2022-27-107-119
    20. Osman V. Patel, Charlyn Partridge, Karen Plaut, Space Environment Impacts Homeostasis: Exposure to Spaceflight Alters Mammary Gland Transportome Genes, 2023, 13, 2218-273X, 872, 10.3390/biom13050872
    21. Alistair V. W. Nunn, Geoffrey W. Guy, Jimmy D. Bell, Informing the Cannabis Conjecture: From Life’s Beginnings to Mitochondria, Membranes and the Electrome—A Review, 2023, 24, 1422-0067, 13070, 10.3390/ijms241713070
    22. Oluwaseun Ruth Alara, Chinonso Ishmael Ukaegbu, Nour Hamid Abdurahman, John Adewole Alara, Hassan Alsaggaf Ali, Plant-sourced Antioxidants in Human Health: A State-of-Art Review, 2023, 19, 15734013, 817, 10.2174/1573401319666230109145319
    23. Feng Li, Yixin Mi, Ronn Zhi Ning Chen, Wei Liu, Ji Wu, Deyin Hou, Min Yang, Sui Zhang, A radical polymer membrane for simultaneous degradation of organic pollutants and water filtration, 2024, 121, 0027-8424, 10.1073/pnas.2315688121
    24. Siliang Liu, Chenyu Ding, Jixiang Sun, Yuxi Liu, Zhongkai Wang, Trabecular bone-inspired tung oil-derived spongy cellular networks with intelligent pH-responsive wettability and superelasticity for efficient multitasking separation, 2024, 488, 13858947, 150863, 10.1016/j.cej.2024.150863
    25. Saara Ahmad (Muddasir Khan), Farzana Abubakar Yousuf, 2024, 9780443188077, 17, 10.1016/B978-0-443-18807-7.00002-8
    26. O. S. Yaremkevych, O. M. Fedoryshyn , Research on the antioxidant properties of extracts from stemless carline thistle (Carlina acaulis l.), mountain arnica (Arnica montana l.) and pot marigold (Calendula officinalis l.), 2024, 7, 26177307, 103, 10.23939/ctas2024.01.103
    27. Fifi Fauziah Ramadhani, , Mulberry (Morus alba L.) leaf extract enhanced spermatozoa motility, viability, and plasma membrane integrity of rats (Rattus norvegicus) exposed to e-cigarette smoke, 2024, 13, 2722-967X, 120, 10.20473/ovz.v13i2.2024.120-128
    28. Marwa M. Attia, Sara S. Barsoum, Hanadi B. A. Baghdadi, Olfat A. Mahdy, Sohila M. EL Gameel, Evaluation of different inflammatory markers during the infection of domestic cats (Felis catus) by Cystoisospora felis (Coccidia: Apicomplexa), 2024, 20, 1746-6148, 10.1186/s12917-024-04295-2
    29. Meng Zhang, Doudou Shi, Mimi Cui, Jinyong Li, Wenjing Cheng, Chunhong Pu, Jiachan Zhang, Changtao Wang, Saccharomyces cerevisiae fermentation of high molecular weight hyaluronic acid enhanced the antioxidant capacity in skin fibroblasts, 2025, 207, 0302-8933, 10.1007/s00203-025-04274-7
    30. Melike Kücükkarapinar, Hans Reuter, 2025, 84, 9780443237522, 425, 10.1016/B978-0-443-23752-2.00010-4
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(13088) PDF downloads(3392) Cited by(157)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog