-
Mathematical Biosciences and Engineering, 2019, 16(6): 6406-6425. doi: 10.3934/mbe.2019320.
Research article
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function
1 College of Information Technology, Shanghai Ocean University, Shanghai, 201306, P.R. China
2 School of Aerospace and Mechanics Engineering, Tongji University, Shanghai 200092, P.R. China
3 School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
Received: , Accepted: , Published:
Keywords: inertial neuron system; nonmonotonic activation function; multistability; attractor merging crisis; period-doubling bifurcation; transient chaos
Citation: Zigen Song, Jian Xu, Bin Zhen. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Mathematical Biosciences and Engineering, 2019, 16(6): 6406-6425. doi: 10.3934/mbe.2019320
References:
- 1. A. N. Pisarchik and U. Feudel, Control of multistability, Phys. Rep., 540(2014), 167–218.
- 2. E. V. Felk, A. P. Kuznetsov and A. V. Savin, Multistability and transition to chaos in the degenerate Hamiltonian system with weak nonlinear dissipative perturbation, Physica A, 410(2014), 561–572.
- 3. Z. G. Song and J. Xu, Codimension-two bursting analysis in the delayed neural system with external stimulations, Nonlinear Dyn., 67(2012), 309–328.
- 4. J. L. Schwartz, N. Grimault, J. M. Hupé, et al., Multistability in perception: sensory modalities, an overview, Philos. Trans. R. Soc. B, 367(2012), 896–905.
- 5. P. A. Tass and C. Hauptmann, Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation, Int. J. Psychophysiol., 64(2007), 53–61.
- 6. F. Fröhlich and M. Bazhenov, Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E, 74(2006), 031922.
- 7. H. A. Lechner, D. A. Baxter, J. W. Clark, et al., Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia, J. Neurophysiol., 75(1996), 957–962.
- 8. J. P. Newman and R. J. Butera, Mechanism, dynamics and biological existence of multistability in a large class of bursting neurons, Chaos, 20(2010), 023118.
- 9. J. Foss, A. Longtin, B. Mensour, et al., Multistability and delayed recurrent loops, Phys. Rev. Lett. 76(1996), 708–711.
- 10. C. Masoller, M. C. Torrent and J. García-Ojalvo, Dynamics of globally delay-coupled neurons displaying subthreshold oscillations, Phil. Trans. R. Soc. A, 367(2009), 3255–3266.
- 11. N. Buric and D. Rankovic, Bursting neurons with coupling delays, Phys. Lett. A, 363(2007), 282–289.
- 12. N. Buric, I. Grozdanovic and N. Vasovic, Excitable systems with internal and coupling delays, Chaos Solit. Fract., 36(2008), 853–861.
- 13. Z. G. Song, K. Yang, J. Xu, et al., Multiple pitchfork bifurcations and multiperiodicity coexistences in a delay-coupled neural oscillator system with inhibitory-to-inhibitory connection, Commun. Nonlinear Sci. Numer. Simulat., 29(2015), 327–345.
- 14. X. Mao, Bifurcation, synchronization, and multistability of two interacting networks with multiple time delays, Int. J. Bifurcat. Chaos, 26(2016), 1650156.
- 15. X. Mao and Z. Wang, Stability switches and bifurcation in a system of four coupled neural networks with multiple time delays, Nonlinear Dyn., 82(2015), 1551–1567.
- 16. M. S. Baptista, R. M. Szmoski, R. F. Pereira, et al., Chaotic, informational and synchronous behaviour of multiplex networks, Sci. Rep., 6(2016), 22617.
- 17. G. He, L. Chen, K. Aihara, Associative memory with a controlled chaotic neural network, Neurocomputing, 71(2008), 2794–2805.
- 18. X. S Yang and Y. Huang, Complex dynamics in simple Hopfield neural networks, Chaos, 16(2006), 033114.
- 19. W. Z. Huang and Y. Huang, Chaos, bifurcation and robustness of a class of Hopfield neural networks, Int. J. Bifurcat. Chaos, 21(2011), 885–895.
- 20. X. S. Yang and Q. Yuan, Chaos and transient chaos in simple Hopfield neural networks, Neurocomputing, 69(2005), 232–241.
- 21. C. G. Li and G. R. Chen, Coexisting chaotic attractors in a single neuron model with adapting feedback synapse, Chaos Solit. Fract., 23(2005), 1599–1604.
- 22. C. Li and J. C. Sprott, Coexisting hidden attractors in a 4-D simplified Lorenz system, Int. J. Bifurcat. Chaos, 24(2014), 1450034.
- 23. J. Kengne, Z. T. Njitacke, A. Nguomkam Negou, et al., Coexistence of multiple attractors and crisis route to chaos in a novel chaotic Jerk circuit, Int. J. Bifurcat. Chaos, 26(2016), 1650081.
- 24. Z. T. Njitacke, J. kengne, H. B. Fotsin, et al., Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit, Chaos Solit. Fract., 91(2016), 180–197.
- 25. J. Kengne, Z. Njitacke Tabekoueng and H. B. Fotsin, Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators, Commun. Nonlinear Sci. Numer. Simulat., 36(2016), 29–44.
- 26. B. C. Bao, Q. D. Li, N. Wang, et al., Multistability in Chua's circuit with two stable node-foci, Chaos, 26(2016), 043111.
- 27. J. Kengne, Z. Njitacke Tabekoueng, V. Kamdoum Tamba, et al., Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit, Chaos, 25(2015), 103126.
- 28. A. P. Kuznetsov, S. P. Kuznetsov, E. Mosekilde, et al., Co-existing hidden attractors in a radio-physical oscillator, J. Phys. A: Math. Theor., 48(2015), 125101.
- 29. A. Massoudi, M. G. Mahjani and M. Jafarian, Multiple attractors in Koper–Gaspard model of electrochemical, J. Electroanalyt. Chem., 647(2010), 74–86.
- 30. C. Y. Cheng, Coexistence of multistability and chaos in a ring of discrete neural network with delays, Int. J. Bifurcat. Chaos, 20(2010), 1119–1136.
- 31. J. Li, F. Liu, Z. H. Guan, et al., A new chaotic Hopfield neural network and its synthesis via parameter switchings, Neurocomputing, 117(2013), 33–39.
- 32. W. C. Schieve, A. R. Bulsara and G. M. Davis, Single effective neuron, Phys. Rev. A, 43(1991), 2613–2623.
- 33. K. L. Badcock and R. M. Westervelt, Dynamics of simple electronic neural networks, Physical D, 28(1987), 305–316.
- 34. D. W. Wheeler and W. C. Schieve, Stability and chaos in an inertial two-neuron system, Physical D, 105(1997), 267–284.
- 35. Q. Liu, X. F. Liao, S. T. Guo, et al., Stability of bifurcating periodic solutions for a single delayed inertial neuron model under periodic excitation, Nonlinear Anal. Real World Appl., 10(2009), 2384–2395.
- 36. Q. Liu, X. F. Liao, Y. Liu, et al., Dynamics of an inertial two-neuron system with time delay, Nonlinear Dyn., 58(2009), 573–609.
- 37. Z. G. Song and J. Xu, Stability switches and Bogdanov–Takens bifurcation in an inertial two-neurons coupling system with multiple delays, Sci. China Tech. Sci., 57(2014), 893–904.
- 38. Z. G. Song, J. Xu and B. Zhen, Multitype activity coexistence in an inertial two-neuron system with multiple delays, Int. J. Bifurcat. Chaos, 25(2015), 1530040.
- 39. B. Crespi, Storage capacity of non-monotonic neurons, Neural Netw., 12(1999), 1377–1389.
- 40. S. Yao, L. Ding, Z. Song, et al., Two bifurcation routes to multiple chaotic coexistence in an inertial two-neural system with time delay, Nonlinear Dyn., 95(2019), 1549–1563.
- 41. Y. C. Lai and T. Tel, Transient Chaos: Complex Dynamics on Finite-Time Scales, Springer, New York, 2011.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *