
Mathematical Biosciences and Engineering, 2019, 16(5): 55515583. doi: 10.3934/mbe.2019276.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Analysis of a mathematical model with nonlinear susceptiblesguided interventions
Department of Applied Mathematics, Xi’an Jiaotong University, Xi’an 710049, P.R. China
Received: , Accepted: , Published:
Special Issues: Nonsmooth biological dynamical systems and applications
Keywords: SIR model; nonlinear statedependent feedback control; Poincaré map; diseasefree periodic solution; transcritical and pitchfork bifurcation; positive orderk periodic solution
Citation: Qian Li, Yanni Xiao. Analysis of a mathematical model with nonlinear susceptiblesguided interventions. Mathematical Biosciences and Engineering, 2019, 16(5): 55515583. doi: 10.3934/mbe.2019276
References:
 1. R. M. Anderson and R. M. May, Infectious Diseases of Humans, Dynamics and Control, Oxford University, Oxford,1991.
 2. V. Capasso, Mathematical Structures of Epidemic Systems, Lecture Notes in Biomathematics, vol. 97, SpringerVerlag, Berlin, 1993.
 3. H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000).
 4. O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation, Wiley Ser. Math. Comput. Biol., John Wiley and Sons, Chichester, England, 2000.
 5. F. Brauer and P. van den Driessche, Models for the transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143–154.
 6. M. A. Nowak and A. R. McLean, A mathematical model of vaccination against HIV to prevent the development of AIDS, Proc. Biol. Sci., 246 (1991), 141–146.
 7. N. M. Ferguson, D. A. T. Cummings, S. Cauchemez, et al., Strategies for containing an emerging in fuenza pandemic in Southeast Asia, Nature, 437 (2005), 209–214.
 8. Y. N. Xiao, T. T. Zhao and S. Y. Tang, Dynamics of an infectious disease with media/ psychology induced nonsooth incidence, Math. Biosci. Eng., 10 (2013), 445–461.
 9. A. L. Wang and Y. N. Xiao, A Filippov system describing media effects on the spread of infectious diseases, Nonlinear Anal. Hybri., 11 (2014), 84–97.
 10. J. A. Cui, X. X. Mu and H. Wan, Saturation recovery leads to multiple endemic equilibria and backward bifurcation, J. Theor. Biol., 254 (2008), 275–283.
 11. J. L. Wang, S. Q. Liu, B. W. Zheng, et al., Qualitative and bifurcation analysis using an SIR model with a saturated treatment function, Math. Comput. Model., 55 (2012), 710–722.
 12. X. Zhang and X. N. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433–443.
 13. L. H. Zhou and M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal. Real., 13 (2012), 312–324.
 14. H. Wan and J. A. Cui, Rich dynamics of an epidemic model with saturation recovery, J. Appl. Math., 314958 (2013).
 15. Z. H. Zhang and Y. H. Suo, Qualitative analysis of a SIR epidemic model with saturated treatment rate, J. Appl. Math. Comput., 34 (2010), 177–194.
 16. S. Y. Tang and R. A. Cheke, Stagedependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences, J. Math. Biol., 50 (2005), 257–292.
 17. S. Y. Tang, Y. N. Xiao and R. A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simul., 80 (2010), 894–921.
 18. A. B. Sabin, Measles, killer of millions in developing countries: strategies of elimination and continuing control, Eur. J. Epidemiol., 7 (1991), 1–22.
 19. B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60 (1998), 1123–1148.
 20. L. Stone, B. Shulgin and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Comput. Model., 31 (2000), 207–215.
 21. A. D'Onofrio, On pulse vaccination strategy in the SIR epidemic model with vertical transmission, Appl. Math. Lett., 18 (2005), 729–732.
 22. F. L. Black, Measles endemicity in insular populations: Critical community size and its evolutionary implication, J. Theor. Biol., 11 (1966), 207–211.
 23. W. J. Moss and P. Strebel, Biological feasibility of measles eradication, J. Infect. Dis., 204 (2011), 47–53.
 24. Q. Q. Zhang, B. Tang and S. Y. Tang, Vaccination threshold size and backward bifurcation of SIR model with statedependent pulse control, J. Theor. Biol., 455 (2018), 75–85.
 25. Q. Li and Y. N. Xiao, Dynamical behaviour and bifurcation analysis of the SIR model with continuous treatment and statedependent impulsive control, Int. J. Bifurcat. Chaos, (2019), Accepted.
 26. A. L. Wang, Y. N. Xiao and R. Smith?, Using nonsmooth models to determine thresholds for microbial pest management, J. Math. Biol., (2019).
 27. A. L. Wang, Y. N. Xiao and R. Smith?, Multiple equilibria in a nonsmooth epidemic model with medicalresource constraints, Bull. Math. Biol., 81 (2019), 963–994.
 28. W. J. Qin, S. Y. Tang and R. A. Cheke, Nonlinear pulse vaccination in an SIR epidemic model with resource limitation, Abstr. Appl. Anal., 670263 (2013).
 29. J. Yang and S. Y. Tang, Holling type II predator–prey model with nonlinear pulse as statedependent feedback control, J. Comput. Appl. Math., 291 (2016), 225–241.
 30. S. Y. Tang, B. Tang, A. L. Wang, et al., Holling II predatorprey impulsive semidynamic model with complex Poincaré map, Nonlinear Dyn., 81 (2015), 1575–1596.
 31. S. Y. Tang, W. H. Pang, R. A. Cheke, et al., Global dynamics of a statedependent feedback control system, Adv. Diff. Equ., 322 (2015), DOI: 10.1186/s136620150661x.
 32. J. M. Grandmont, Nonlinear difference equations, bifurcations and chaos: an introduction, Research in Economics, 62 (2008), 122–177.
 33. Y. N. Xiao, X. X. Xu and S. Y. Tang, Sliding mode control of outbreaks of emerging infectious diseases, Bull. Math. Biol., 74 (2012), 2403–2422.
 34. Y. P. Yang, Y. N. Xiao and J. H. Wu, Pulse HIV vaccination: feasibility for virus eradication and optimal vaccination schedule, Bull. Math. Biol., 75 (2013), 725–751.
 35. Y. Tian, K. B. Sun, A. Kasperski, et al., Nonlinear modelling and qualitative analysis of a real chemostat with pulse feeding, Discrete Dyn. Nat. Soc., 640594 (2011), 1–18.
 36. S. Y. Tang and W. H. Pang, On the continuity of the function describing the times of meeting impulsive set and its application, Math. Biosci. Eng., 14 (2017), 1399–1406.
 37. X. N. Liu, Y. Takeuchi and S. Iwami, SVIR epidemic model with vaccination strategy, J. Theor. Biol., 253 (2008), 1–11.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *