Review Special Issues

Applications of piezoelectric and biomedical metamaterials: A review

  • Received: 08 April 2025 Revised: 05 June 2025 Accepted: 13 June 2025 Published: 02 July 2025
  • In this review, we provide a comprehensive overview of recent advances in bioinspired and piezoelectric metamaterials, focusing on their applications in biomedical engineering, smart sensing, and related fields. We examined how artificially engineered micro- and nanostructures enable metamaterial-based biosensors to achieve highly sensitive, label-free detection of biomolecules across microwave, terahertz, and optical frequencies, with detection limits reaching the attomolar level. These capabilities offer transformative potential for cancer biomarker screening, rapid viral diagnostics, and cellular activity monitoring. We also highlight the growing role of piezoelectric metamaterials in structural health monitoring, including low-frequency vibration suppression and acoustic wave control, as well as in biomedical applications such as bone tissue regeneration and self-powered medical devices, enabled by advances in electromechanical coupling and structural design. In addition, the integration of bioinspired architectures with 3D printing has led to the development of multifunctional metamaterials exhibiting features such as negative Poisson's ratios and adaptive mechanical responses, with promising applications in soft robotics, tissue scaffolds, and protective systems. We further discussed terahertz metamaterial devices, including perfect absorbers, polarization converters, and smart sensing platforms that incorporate microfluidics and plasmonic resonance, driving innovation in precision medicine and environmental monitoring. Collectively, these developments emphasize the importance of a "structure–function–intelligence" design paradigm and offer strategic insights into emerging research directions across healthcare, communications, and aerospace. We conclude by summarizing key analytical and fabrication methodologies, referencing 193 scholarly works.

    Citation: Qinghua Qin. Applications of piezoelectric and biomedical metamaterials: A review[J]. AIMS Materials Science, 2025, 12(3): 562-609. doi: 10.3934/matersci.2025025

    Related Papers:

  • In this review, we provide a comprehensive overview of recent advances in bioinspired and piezoelectric metamaterials, focusing on their applications in biomedical engineering, smart sensing, and related fields. We examined how artificially engineered micro- and nanostructures enable metamaterial-based biosensors to achieve highly sensitive, label-free detection of biomolecules across microwave, terahertz, and optical frequencies, with detection limits reaching the attomolar level. These capabilities offer transformative potential for cancer biomarker screening, rapid viral diagnostics, and cellular activity monitoring. We also highlight the growing role of piezoelectric metamaterials in structural health monitoring, including low-frequency vibration suppression and acoustic wave control, as well as in biomedical applications such as bone tissue regeneration and self-powered medical devices, enabled by advances in electromechanical coupling and structural design. In addition, the integration of bioinspired architectures with 3D printing has led to the development of multifunctional metamaterials exhibiting features such as negative Poisson's ratios and adaptive mechanical responses, with promising applications in soft robotics, tissue scaffolds, and protective systems. We further discussed terahertz metamaterial devices, including perfect absorbers, polarization converters, and smart sensing platforms that incorporate microfluidics and plasmonic resonance, driving innovation in precision medicine and environmental monitoring. Collectively, these developments emphasize the importance of a "structure–function–intelligence" design paradigm and offer strategic insights into emerging research directions across healthcare, communications, and aerospace. We conclude by summarizing key analytical and fabrication methodologies, referencing 193 scholarly works.



    加载中


    [1] Xiong C, Xiao Y, Qin QH (2025) Ultrawide bandgap optimization of porous 3D two-material phononic crystals aided by a 2D-based PnC construction method. Model Simul Mater Sci Eng 33: 015014. https://dx.doi.org/10.1088/1361-651X/ada174 doi: 10.1088/1361-651X/ada174
    [2] Wang T, Sheng MP, Guo ZW, et al. (2016) Flexural wave suppression by an acoustic metamaterial plate. Appl Acoust 114: 118–124. https://doi.org/10.1016/j.apacoust.2016.07.023 doi: 10.1016/j.apacoust.2016.07.023
    [3] Yin C, Xiao Y, Zhu D, et al. (2022) Design of low-frequency 1D phononic crystals harnessing compression–twist coupling effect with large deflection angle. Thin Wall Struct 179: 109600. https://doi.org/10.1016/j.tws.2022.109600 doi: 10.1016/j.tws.2022.109600
    [4] Shirzad M, Bodaghi M, Oh D, et al. (2024) Design and optimization of bioinspired auxetic structure for biomedical applications. Eur J Mech A-Solids 103: 105139. https://doi.org/10.1016/j.euromechsol.2023.105139 doi: 10.1016/j.euromechsol.2023.105139
    [5] Xiong C, Xiao Y, Qin QH, et al. (2024) Bandgap design of 3D single-phase phononic crystals by geometric-constrained topology optimization. AIMS Mater Sci 11: 415–437. https://doi.org/10.3934/matersci.2024021 doi: 10.3934/matersci.2024021
    [6] Dong J, Hu C, Holmes J, et al. (2022) Structural optimisation of cross-chiral metamaterial structures via genetic algorithm. Compos Struct 282: 115035. https://doi.org/10.1016/j.compstruct.2021.115035 doi: 10.1016/j.compstruct.2021.115035
    [7] Jiao P, Hasni H, Lajnef N, et al. (2020) Mechanical metamaterial piezoelectric nanogenerator (MM-PENG): Design principle, modeling and performance. Mater Des 187: 108214. https://doi.org/10.1016/j.matdes.2019.108214 doi: 10.1016/j.matdes.2019.108214
    [8] Xu M, Zhao Z, Wang P, et al. (2022) Mechanical performance of bio-inspired hierarchical honeycomb metamaterials. Int J Solids Struct 254–255: 111866. https://doi.org/10.1016/j.ijsolstr.2022.111866 doi: 10.1016/j.ijsolstr.2022.111866
    [9] Clasky AJ, Watchorn JD, Chen PZ, et al. (2021) From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 122: 1–25. https://doi.org/10.1016/j.actbio.2020.12.030 doi: 10.1016/j.actbio.2020.12.030
    [10] Huang H, Wang L, Fan Y (2023) Metallic meta-biomaterials: A critical review of fatigue behaviors. J SCI-Adv Mater Dev 8: 100585. https://doi.org/10.1016/j.jsamd.2023.100585 doi: 10.1016/j.jsamd.2023.100585
    [11] Shirzad M, Zolfagharian A, Bodaghi M, et al. (2023) Auxetic metamaterials for bone-implanted medical devices: Recent advances and new perspectives. Eur J Mech A-Solids 98: 104905. https://doi.org/10.1016/j.euromechsol.2022.104905 doi: 10.1016/j.euromechsol.2022.104905
    [12] Cui N, Guan M, Xu M, et al. (2020) Design and application of terahertz metamaterial sensor based on DSRRs in clinical quantitative detection of carcinoembryonic antigen. Opt Express 28: 16834–16844. https://doi.org/10.1364/oe.393397 doi: 10.1364/oe.393397
    [13] Wu J, Wang Z, Liang L, et al. (2025) Ultra-sensitive terahertz metamaterial sensors hybridized with graphene for trace detection of the cancer biomarker. Opt Commun 574: 131193. https://doi.org/10.1016/j.optcom.2024.131193 doi: 10.1016/j.optcom.2024.131193
    [14] Keshavarz A, Vafapour Z (2019) Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sens J 19: 5161–5166. https://doi.org/10.1109/JSEN.2019.2903731 doi: 10.1109/JSEN.2019.2903731
    [15] Hu F, Guo E, Xu X, et al. (2017) Real-timely monitoring the interaction between bovine serum albumin and drugs in aqueous with terahertz metamaterial biosensor. Opt Commun 388: 62–67. https://doi.org/10.1016/j.optcom.2016.11.006 doi: 10.1016/j.optcom.2016.11.006
    [16] Tang H, Zhang S, Tian Y, et al. (2023) Bioinspired soft elastic metamaterials for reconstruction of natural hearing. Adv Sci 10: 2207273. https://doi.org/10.1002/advs.202207273 doi: 10.1002/advs.202207273
    [17] Li J, Yang F, Long Y, et al. (2021) Bulk ferroelectric metamaterial with enhanced piezoelectric and biomimetic mechanical properties from additive manufacturing. ACS Nano 15: 14903–14914. https://doi.org/10.1021/acsnano.1c05003 doi: 10.1021/acsnano.1c05003
    [18] Wei J, Sun BH (2024) Study on the mechanical properties of cylindrical mechanical metamaterials with biomimetic honeycomb units of the diabolical ironclad beetle. Extreme Mech Lett 67: 102127. https://doi.org/10.1016/j.eml.2024.102127 doi: 10.1016/j.eml.2024.102127
    [19] Gao C, Li Y (2019) Mechanical model of bio-inspired composites with sutural tessellation. J Mech Phys Solids 122: 190–204. https://doi.org/10.1016/j.jmps.2018.09.015 doi: 10.1016/j.jmps.2018.09.015
    [20] Zhang Z, Song B, Fan J, et al. (2023) Design and 3D printing of graded bionic metamaterial inspired by pomelo peel for high energy absorption. Chin J Mech Eng Addit Manuf Front 2: 100068. https://doi.org/10.1016/j.cjmeam.2023.100068 doi: 10.1016/j.cjmeam.2023.100068
    [21] Jiao P, Chen Z, Wang J (2024) Origami metamaterial biomimetic bouquets expand floriography to spatiotemporal 4D. Cell Rep Phys Sci 5: 101921. https://doi.org/10.1016/j.xcrp.2024.101921 doi: 10.1016/j.xcrp.2024.101921
    [22] Zhao Y, Wu Q, Zhao C, et al. (2024) Progress of structural scaffold biomaterials for bone tissue defect repair: A cutting-edge review. Compos Struct 349–350: 118542. https://doi.org/10.1016/j.compstruct.2024.118542 doi: 10.1016/j.compstruct.2024.118542
    [23] Tilton M, Borjali A, Isaacson A, et al. (2021) On structure and mechanics of biomimetic meta-biomaterials fabricated via metal additive manufacturing. Mater Des 201: 109498. https://doi.org/10.1016/j.matdes.2021.109498 doi: 10.1016/j.matdes.2021.109498
    [24] Wei X, Ren C, Liu B, et al. (2025) The theory, technology, and application of terahertz metamaterial biosensors: A review. Fundamental Res 5: 571–585. https://doi.org/10.1016/j.fmre.2024.11.008 doi: 10.1016/j.fmre.2024.11.008
    [25] Wang W, Sun K, Xue Y, et al. (2024) A review of terahertz metamaterial sensors and their applications. Opt Commun 556: 130266. https://doi.org/10.1016/j.optcom.2024.130266 doi: 10.1016/j.optcom.2024.130266
    [26] Pandey R, Kumar Mishra S, Kumar Dubey A (2024) Recent advances in smart piezoelectric biomaterials: Animal studies and beyond. Chem Eng J 500: 156750. https://doi.org/10.1016/j.cej.2024.156750 doi: 10.1016/j.cej.2024.156750
    [27] Yan Z, Tran H, Ma D, et al. (2024) Emerging piezoelectric metamaterials for biomedical applications. Mater Interfaces 1: 13–34. https://doi.org/10.53941/mi.2024.100004 doi: 10.53941/mi.2024.100004
    [28] Wang T, Wang H, Sheng MP, et al. (2016) Complete low-frequency bandgap in a two-dimensional phononic crystal with spindle-shaped inclusions. Chin Phys B 25: 046301. https://dx.doi.org/10.1088/1674-1056/25/4/046301 doi: 10.1088/1674-1056/25/4/046301
    [29] Hu C, Dong J, Luo J, et al. (2020) 3D printing of chiral carbon fiber reinforced polylactic acid composites with negative Poisson's ratios. Compos Part B-Eng 201: 108400. https://doi.org/10.1016/j.compositesb.2020.108400 doi: 10.1016/j.compositesb.2020.108400
    [30] Aghighi F, Morris J, Amirkhizi AV (2019) Low-frequency micro-structured mechanical metamaterials. Mech Mater 130: 65–75. https://doi.org/10.1016/j.mechmat.2018.12.008 doi: 10.1016/j.mechmat.2018.12.008
    [31] Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Appl Mech Rev 66: 040802. https://doi.org/10.1115/1.4026911 doi: 10.1115/1.4026911
    [32] Wang T, Sheng MP, Wang H, et al. (2015) Band structures in two-dimensional phononic crystals with periodic S-shaped slot. Acoust Aust 43: 275–281. https://doi.org/10.1007/s40857-015-0031-6 doi: 10.1007/s40857-015-0031-6
    [33] Fujita S, Ito K (2007) Bloch theorem, In: Fujita S, Ito K, Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron, New York, NY: Springer New York, 85–95. https://doi.org/10.1007/978-0-387-74103-1_7
    [34] Chen Z, Xia Y, He J, et al. (2020) Elastic-electro-mechanical modeling and analysis of piezoelectric metamaterial plate with a self-powered synchronized charge extraction circuit for vibration energy harvesting. Mech Syst Signai Pr 143: 106824. https://doi.org/10.1016/j.ymssp.2020.106824 doi: 10.1016/j.ymssp.2020.106824
    [35] Sugino C, Ruzzene M, Erturk A (2018) Design and analysis of piezoelectric metamaterial beams with synthetic impedance shunt circuits. IEEE-ASME T Mech 23: 2144–2155. http://dx.doi.org/10.1109/tmech.2018.2863257 doi: 10.1109/tmech.2018.2863257
    [36] Xu J, Yan R, Tang J (2018) Broadening bandgap width of piezoelectric metamaterial by introducing cavity. Appl Sci 8: 1606. https://doi.org/10.3390/app8091606 doi: 10.3390/app8091606
    [37] Gao W, Hu J, Qin Z, et al. (2023) Flexural wave manipulation in perforated metamaterial plates with acoustic black holes interconnected by piezoelectric studs. Compos Struct 321: 117224. https://doi.org/10.1016/j.compstruct.2023.117224 doi: 10.1016/j.compstruct.2023.117224
    [38] Pan W, Tang G, Tang J (2018) Evaluation of uncertainty effects to band gap behavior of circuitry-integrated piezoelectric metamaterial using order-reduced analysis. J Intell Mater Syst Struct 29: 2677–2692. https://journals.sagepub.com/doi/abs/10.1177/1045389X18778359 doi: 10.1177/1045389X18778359
    [39] Xu J, Yan R (2018) Exploitation of dimension-dependent behavior of piezoelectric metamaterial with LC shunt circuit. Eur Phys J Appl Phys 83: 20501. https://doi.org/10.1051/epjap/2018180124 doi: 10.1051/epjap/2018180124
    [40] Sugino C, Ruzzene M, Erturk A (2020) Nonreciprocal piezoelectric metamaterial framework and circuit strategies. Phys Rev B 102: 014304. https://link.aps.org/doi/10.1103/PhysRevB.102.014304 doi: 10.1103/PhysRevB.102.014304
    [41] Jiang R, Chen Y, Wang Z, et al. (2025) Modular bistable mechanical metamaterials: A versatile platform for piezoelectric self-charging, sensing, and logic operations. Mater Today 83: 96–112. https://doi.org/10.1016/j.mattod.2024.12.013 doi: 10.1016/j.mattod.2024.12.013
    [42] Yin P, Li B, Zhang Y, et al. (2025) A bioinspired multi-layer assembly method for mechanical metamaterials with extreme properties using topology optimization. Comput Meth Appl Mech Eng 438: 117850. https://doi.org/10.1016/j.cma.2025.117850 doi: 10.1016/j.cma.2025.117850
    [43] Yang J, Li Z, Xin X, et al. (2019) Designing electromechanical metamaterial with full nonzero piezoelectric coefficients. Sci Adv 5: eaax1782. https://doi.org/10.1126/sciadv.aax1782 doi: 10.1126/sciadv.aax1782
    [44] Sugino C, Ruzzene M, Erturk A (2020) An analytical framework for locally resonant piezoelectric metamaterial plates. Int J Solids Struct 182–183: 281–294. https://doi.org/10.1016/j.ijsolstr.2019.08.011 doi: 10.1016/j.ijsolstr.2019.08.011
    [45] Sugino C, Leadenham S, Ruzzene M, et al. (2017) Metamaterial piezoelectric beam with synthetic impedance shunts. Proc SPIE 2017: 1016410. https://doi.org/10.1117/12.2260320 doi: 10.1117/12.2260320
    [46] Xu J, Tang J (2017) Tunable prism based on piezoelectric metamaterial for acoustic beam steering. Appl Phys Lett 110: 181902. https://doi.org/10.1063/1.4982717 doi: 10.1063/1.4982717
    [47] Xu J, Tang J (2016) Acoustic prism for continuous beam steering based on piezo-electric metamaterial. Proc SPIE 2016: 97992I. https://doi.org/10.1117/12.2219464 doi: 10.1117/12.2219464
    [48] Saadatzi M, Mir F, Saadatzi MN, et al. (2018) Modeling and fabrication of a multi-axial piezoelectric energy harvester based on a metamaterial-inspired structure. IEEE Sens J 18: 9410–9419. http://dx.doi.org/10.1109/JSEN.2018.2870993 doi: 10.1109/JSEN.2018.2870993
    [49] Chen Z, He J, Wang G (2019) Vibration bandgaps of piezoelectric metamaterial plate with local resonators for vibration energy harvesting. Shock Vib 2019: 1397123. https://doi.org/10.1155/2019/1397123 doi: 10.1155/2019/1397123
    [50] Bao B, Lallart M, Guyomar D (2020) Manipulating elastic waves through piezoelectric metamaterial with nonlinear electrical switched dual-connected topologies. Int J Mech Sci 172: 105423. https://doi.org/10.1016/j.ijmecsci.2020.105423 doi: 10.1016/j.ijmecsci.2020.105423
    [51] Hu G, Tang L, Das R (2017) Metamaterial-inspired piezoelectric system with dual functionalities: Energy harvesting and vibration suppression. Proc SPIE 2017: 101641X. https://doi.org/10.1117/12.2260396 doi: 10.1117/12.2260396
    [52] Kherraz N, Haumesser L, Levassort F, et al. (2018) Hybridization bandgap induced by an electrical resonance in piezoelectric metamaterial plates. J Appl Phys 123: 094901. https://doi.org/10.1063/1.5016496 doi: 10.1063/1.5016496
    [53] Wang G, Cheng J, Chen J, et al. (2017) Multi-resonant piezoelectric shunting induced by digital controllers for subwavelength elastic wave attenuation in smart metamaterial. Smart Mater Struct 26: 025031. https://dx.doi.org/10.1088/1361-665X/aa53ea doi: 10.1088/1361-665X/aa53ea
    [54] Pan W, Tang G, Tang J (2017) Assessment of uncertainty effect in piezoelectric metamaterial. Proc SPIE 2017: 101650K. https://doi.org/10.1117/12.2260366 doi: 10.1117/12.2260366
    [55] Li S, Xu J, Tang J (2017) Adaptive acoustic metamaterial with periodic piezoelectric network. Proc SPIE 2017: 101640N. https://doi.org/10.1117/12.2260333 doi: 10.1117/12.2260333
    [56] Sun Y, Han Q, Jiang T, et al. (2024) Coupled bandgap properties and wave attenuation in the piezoelectric metamaterial beam on periodic elastic foundation. Appl Math Model 125: 293–310. https://doi.org/10.1016/j.apm.2023.09.030 doi: 10.1016/j.apm.2023.09.030
    [57] Chen B, Zheng Y, Dai S, et al. (2024) Bandgap enhancement of a piezoelectric metamaterial beam shunted with circuits incorporating fractional and cubic nonlinearities. Mech Syst Signai Pr 212: 111262. https://doi.org/10.1016/j.ymssp.2024.111262 doi: 10.1016/j.ymssp.2024.111262
    [58] Hu G, Tang L, Das R, et al. (2018) Internally coupled piezoelectric metamaterial beam with multi-functionalities. Proc SPIE 2018: 1059516. https://doi.org/10.1117/12.2296451 doi: 10.1117/12.2296451
    [59] Bao B, Guyomar D, Lallart M (2016) Electron–phonon metamaterial featuring nonlinear tri-interleaved piezoelectric topologies and its application in low-frequency vibration control. Smart Mater Struct 25: 095010. https://dx.doi.org/10.1088/0964-1726/25/9/095010 doi: 10.1088/0964-1726/25/9/095010
    [60] Jian Y, Hu G, Tang L, et al. (2023) Analytical and experimental study of a metamaterial beam with grading piezoelectric transducers for vibration attenuation band widening. Eng Struct 275: 115091. https://doi.org/10.1016/j.engstruct.2022.115091 doi: 10.1016/j.engstruct.2022.115091
    [61] Li Q, Wei B (2025) Vibration control of functionally graded composite annular plates reinforced with graphene origami-enabled auxetic metamaterials with piezoelectric layers. Wave Motion 136: 103539. https://doi.org/10.1016/j.wavemoti.2025.103539 doi: 10.1016/j.wavemoti.2025.103539
    [62] Cai J, Yan L, Seyedkanani A, et al. (2024) Nano-architected GaN metamaterials with notable topology-dependent enhancement of piezoelectric energy harvesting. Nano Energy 129: 109990. https://doi.org/10.1016/j.nanoen.2024.109990 doi: 10.1016/j.nanoen.2024.109990
    [63] Xiao H, Li T, Zhang L, et al. (2023) Metamaterial based piezoelectric acoustic energy harvesting: Electromechanical coupled modeling and experimental validation. Mech Syst Signai Pr 185: 109808. https://doi.org/10.1016/j.ymssp.2022.109808 doi: 10.1016/j.ymssp.2022.109808
    [64] Huang W, Tang W, Chen Z, et al. (2025) Reinforcement-learning empowered adaptive piezoelectric metamaterial for variable-frequency vibration attenuation. Eng Struct 332: 120013. https://doi.org/10.1016/j.engstruct.2025.120013 doi: 10.1016/j.engstruct.2025.120013
    [65] Zhu X, Qiao J, Zhang G, et al. (2017) Tunable acoustic metamaterial based on piezoelectric ceramic transducer. Proc SPIE 2017: 1016411. https://doi.org/10.1117/12.2259963 doi: 10.1117/12.2259963
    [66] Zhao JW, Yao LY, Zhang XD, et al. (2025) Investigation of elastic waves frequency converted for the piezoelectric metamaterial cylindrical shell. Compos Struct 354: 118799. https://doi.org/10.1016/j.compstruct.2024.118799 doi: 10.1016/j.compstruct.2024.118799
    [67] Rezaei S, Eskandari-Ghadi M, Rahimian M (2017) Simulation-based conceptual design of an acoustic metamaterial with full band gap using an air-based 1-3 piezoelectric composite for ultrasonic noise control. Comptes Rendus Mécanique 345: 137–152. https://doi.org/10.1016/j.crme.2016.11.003 doi: 10.1016/j.crme.2016.11.003
    [68] Khan KA, Khan MA (2019) 3-3 Piezoelectric metamaterial with negative and zero Poisson's ratio for hydrophones applications. Mater Res Bull 112: 194–204. https://doi.org/10.1016/j.materresbull.2018.12.016 doi: 10.1016/j.materresbull.2018.12.016
    [69] Xu J, Li S, Tang J (2017) Adaptive GRIN lens based on piezoelectric metamaterial for acoustic beam focusing. Proc SPIE 2017: 101641S. https://doi.org/10.1117/12.2260341 doi: 10.1117/12.2260341
    [70] Wang M, Yi K, Zhu R (2023) Tunable underwater low-frequency sound absorption via locally resonant piezoelectric metamaterials. J Sound Vibr 548: 117514. https://doi.org/10.1016/j.jsv.2022.117514 doi: 10.1016/j.jsv.2022.117514
    [71] Hui Y, Rinaldi M (2015) Spectrally selective infrared detector based on an ultra-thin piezoelectric resonant metamaterial. 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 2015,984–987. https://doi.org/10.1109/MEMSYS.2015.7051126
    [72] Wang C, Chen X, Song Q, et al. (2025) Investment micro-casting 3D-printed multi-metamaterial for programmable multimodal biomimetic electronics. Device 3: 100658. https://doi.org/10.1016/j.device.2024.100658 doi: 10.1016/j.device.2024.100658
    [73] Annamdas VGM, Soh CK (2019) A perspective of non-fiber-optical metamaterial and piezoelectric material sensing in automated structural health monitoring. Sensors-Basel 19: 1490. https://doi.org/10.3390/s19071490 doi: 10.3390/s19071490
    [74] Kazim M, Pal A, Goswami D (2025) Mechanical metamaterials for bioengineering: In vitro, wearable, and implantable applications. Adv Eng Mater 27: 2401806. https://doi.org/10.1002/adem.202401806 doi: 10.1002/adem.202401806
    [75] Greco F, Codony D, Mohammadi H, et al. (2024) Topology optimization of flexoelectric metamaterials with apparent piezoelectricity. J Mech Phys Solids 183: 105477. https://doi.org/10.1016/j.jmps.2023.105477 doi: 10.1016/j.jmps.2023.105477
    [76] Lin LF, Lu ZQ, Zhao L, et al. (2023) Vibration isolation of mechatronic metamaterial beam with resonant piezoelectric shunting. Int J Mech Sci 254: 108448. https://doi.org/10.1016/j.ijmecsci.2023.108448 doi: 10.1016/j.ijmecsci.2023.108448
    [77] Wang C, Zhao Z, Zhang XS (2023) Inverse design of magneto-active metasurfaces and robots: Theory, computation, and experimental validation. Comput Meth Appl Mech Eng 413: 116065. https://doi.org/10.1016/j.cma.2023.116065 doi: 10.1016/j.cma.2023.116065
    [78] Zhang Y, Jiang WZ, Zhang XY, et al. (2025) Re-entrant thermal-responsive metamaterials with widely tunable thermal expansion. Compos Struct 364: 119166. https://doi.org/10.1016/j.compstruct.2025.119166 doi: 10.1016/j.compstruct.2025.119166
    [79] Khalid MY, Arif ZU, Tariq A, et al. (2024) 3D printing of active mechanical metamaterials: A critical review. Mater Des 246: 113305. https://doi.org/10.1016/j.matdes.2024.113305 doi: 10.1016/j.matdes.2024.113305
    [80] Hosseinkhani A, Rohan E (2024) Multi-functional periodically heterogeneous structures for energy harvesting and vibration attenuation-effects of piezoelectricity and shunting circuits. Smart Mater Struct 33: 115009. http://dx.doi.org/10.1088/1361-665X/ad7f33 doi: 10.1088/1361-665X/ad7f33
    [81] Urban D (2025) Novel effects in light-actuated systems based on dispersed azobenzene dyes and azopolymers. PhD Thesis: NETU. Available from: https://hdl.handle.net/11250/3188965.
    [82] Zhang G, Xu C, Sun D, et al. (2025) Metasurface-tuned light-matter interactions for high-performance photodetectors. Fundamental Res (In press). https://doi.org/10.1016/j.fmre.2024.01.002
    [83] Gao Z, Lei Y, Li Z, et al. (2025) Artificial piezoelectric metamaterials. Prog Mater Sci 151: 101434. https://doi.org/10.1016/j.pmatsci.2025.101434 doi: 10.1016/j.pmatsci.2025.101434
    [84] Ji G, Huber J (2022) Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials—A review. Appl Mater Today 26: 101260. https://doi.org/10.1016/j.apmt.2021.101260 doi: 10.1016/j.apmt.2021.101260
    [85] Ghafourivayghan M, Shabunin SN (2024) Feasibility assessment of guided resonance modes in high Q and resolution mm-wave metamaterial biosensor. Optik 299: 171619. https://doi.org/10.1016/j.ijleo.2024.171619 doi: 10.1016/j.ijleo.2024.171619
    [86] Le KQ, Bai J, Ngo QM, et al. (2017) Fabrication and numerical characterization of infrared metamaterial absorbers for refractometric biosensors. J Electron Mater 46: 668–6760 https://doi.org/10.1007/s11664-016-4979-2 doi: 10.1007/s11664-016-4979-2
    [87] Vafapour Z (2017) Near infrared biosensor based on classical electromagnetically induced reflectance (Cl-EIR) in a planar complementary metamaterial. Opt Commun 387: 1–11. https://doi.org/10.1016/j.optcom.2016.11.031 doi: 10.1016/j.optcom.2016.11.031
    [88] Fang J, Levchenko I, Yan W, et al. (2015) Plasmonic metamaterial sensor with ultra-high sensitivity in the visible spectral range. Adv Opt Mater 3: 750–755. https://doi.org/10.1002/adom.201400577 doi: 10.1002/adom.201400577
    [89] Liu Y, Ma WZ, Wu YC, et al. (2023) Multi-peak narrow-band metamaterial absorber for visible to near-infrared wavelengths. Results Phys 47: 106374. https://doi.org/10.1016/j.rinp.2023.106374 doi: 10.1016/j.rinp.2023.106374
    [90] Danilov A, Tselikov G, Wu F, et al. (2018) Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. Biosens Bioelectron 104: 102–112. https://doi.org/10.1016/j.bios.2017.12.001 doi: 10.1016/j.bios.2017.12.001
    [91] Chen J, Hu F, Lin S, et al. (2024) Hybridization chain reaction assisted terahertz metamaterial biosensor for highly sensitive detection of microRNAs. Spectrochim Acta A 307: 123646. https://doi.org/10.1016/j.saa.2023.123646 doi: 10.1016/j.saa.2023.123646
    [92] Deng XS, Fang M, Ren, XG, et al. (2019) Ultra-sensitive bio-sensor based on trapped mode all-dielectric metasurface coating with graphene layer. Acta Photonica Sinica 48: 1248005. http://dx.doi.org/10.3788/gzxb20194812.1248005 doi: 10.3788/gzxb20194812.1248005
    [93] Bi H, You R, Bian X, et al. (2024) A magnetic control enrichment technique combined with terahertz metamaterial biosensor for detecting SARS-CoV-2 spike protein. Biosens Bioelectron 243: 115763. https://doi.org/10.1016/j.bios.2023.115763 doi: 10.1016/j.bios.2023.115763
    [94] Kazemi F, Tabatabaeian ZS, Zarrabi FB (2024) A terahertz metamaterial biosensor based on spoof surface plasmon polaritons transmission line for avian influenza virus detection. Opt Laser Technol 174: 110694. https://doi.org/10.1016/j.optlastec.2024.110694 doi: 10.1016/j.optlastec.2024.110694
    [95] Li Y, Chen X, Hu F, et al. (2019) Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein. J Phys D Appl Phys 52: 095105. https://dx.doi.org/10.1088/1361-6463/aaf7e9 doi: 10.1088/1361-6463/aaf7e9
    [96] Luigi La S, Filiberto B, Lucio V (2011) Metamaterial resonator arrays for organic and inorganic compound sensing. Proc SPIE 2011: 83060I. https://doi.org/10.1117/12.912267 doi: 10.1117/12.912267
    [97] Tripathy SK, Gorai A, Behera TM, et al. (2024) A miniaturized dual band terahertz metamaterial based absorber as a biosensor for non-melanoma skin cancer diognostic. Optik 316: 172048. https://doi.org/10.1016/j.ijleo.2024.172048 doi: 10.1016/j.ijleo.2024.172048
    [98] Zhang C, Liang L, Ding L, et al. (2016) Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor. Appl Phys Lett 108: 241105. https://doi.org/10.1063/1.4954015 doi: 10.1063/1.4954015
    [99] Zhang Z, Yang M, Liang L, et al. (2019) Biosensor platforms of the polarization-dependent metamaterials for the detection of cancer-cell concentration. Proc SPIE 2019: 111960X. https://doi.org/10.1117/12.2534423 doi: 10.1117/12.2534423
    [100] Yang M, Zhang Z, Yan X, et al. (2019) The biosensing of liver cancer cells based on the terahertz plasmonic metamaterials Proc SPIE 2019: 111960E. https://doi.org/10.1117/12.2536419 doi: 10.1117/12.2536419
    [101] Keshavarz A, Vafapour Z (2019) Water-based terahertz metamaterial for skin cancer detection application. IEEE Sens J 19: 1519–1524. https://doi.org/10.1109/JSEN.2018.2882363 doi: 10.1109/JSEN.2018.2882363
    [102] Haque SMA, Ahmed M, Alqahtani A, et al. (2024) Modelling and analysis of a triple-band metamaterial absorber for early-stage cervical cancer HeLa cell detection. Opt Lasers Eng 181: 108426. https://doi.org/10.1016/j.optlaseng.2024.108426 doi: 10.1016/j.optlaseng.2024.108426
    [103] Mahfuz T, Hossan A, Rahman N (2025) Design of a polarization independent terahertz metamaterial absorber for biomedical sensing applications. Biosens Bioelectron:X 22: 100560. https://doi.org/10.1016/j.biosx.2024.100560 doi: 10.1016/j.biosx.2024.100560
    [104] Kim M, Kang DH, Choi JH, et al. (2024) Highly sensitive and label-free protein immunoassay-based biosensor comprising infrared metamaterial absorber inducing strong coupling. Biosens Bioelectron 260: 116436. https://doi.org/10.1016/j.bios.2024.116436 doi: 10.1016/j.bios.2024.116436
    [105] Kim T, Kwak J, Roh Y, et al. (2025) Terahertz metamaterial on-chip sensing platform for live cancer cell microenvironment analysis. Chem Eng J 509: 161370. https://doi.org/10.1016/j.cej.2025.161370 doi: 10.1016/j.cej.2025.161370
    [106] Upender P, Kumar A (2025) Numerical investigation of a high-performance MXene and graphene-based metamaterial absorber for terahertz biosensing. Results Phys 70: 108185. https://doi.org/10.1016/j.rinp.2025.108185 doi: 10.1016/j.rinp.2025.108185
    [107] Shakiba L, Salehi MR, Emami F (2024) A multiband perfect metamaterial absorber based on phase change material for switching and biosensing applications. Opt Commun 560: 130498. https://doi.org/10.1016/j.optcom.2024.130498 doi: 10.1016/j.optcom.2024.130498
    [108] Yang M, Zhang Z, Liang L, et al. (2019) Sensitive detection of the concentrations for normal epithelial cells based on Fano resonance metamaterial biosensors in terahertz range. Appl Optics 58: 6268–6273. https://doi.org/10.1364/AO.58.006268 doi: 10.1364/AO.58.006268
    [109] Yu W, Li J, Huang G, et al. (2024) Rapid and sensitive detection of Staphylococcus aureus using a THz metamaterial biosensor based on aptamer-functionalized Fe3O4@Au nanocomposites. Talanta 272: 125760. https://doi.org/10.1016/j.talanta.2024.125760 doi: 10.1016/j.talanta.2024.125760
    [110] Chen K, Ruan C, Zhan F, et al. (2023) Ultra-sensitive terahertz metamaterials biosensor based on luxuriant gaps structure. iScience 26: 105781. https://doi.org/10.1016/j.isci.2022.105781 doi: 10.1016/j.isci.2022.105781
    [111] Yang K, Li J, Lamy de la Chapelle M, et al. (2021) A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens Bioelectron 175: 112874. https://doi.org/10.1016/j.bios.2020.112874 doi: 10.1016/j.bios.2020.112874
    [112] Prajapati YK, Pal S, Saini JP (2018) Effect of a metamaterial and silicon layers on performance of surface plasmon resonance biosensor in infrared range. Silicon-Neth 10: 1451–1460. https://doi.org/10.1007/s12633-017-9625-y doi: 10.1007/s12633-017-9625-y
    [113] Mirzaei S, Green NG, Rotaru M, et al. (2017) Detecting and identifying DNA via the THz backbone frequency using a metamaterial-based label-free biosensor. Proc SPIE 2017: 101031I. https://doi.org/10.1117/12.2263694 doi: 10.1117/12.2263694
    [114] Zhao L, Niu Q, He Z, et al. (2018) Theoretical excitation of 2-D (1, 1) cavity mode with asymmetric sword-shaped notched square resonators for metamaterial perfect multiband absorbers in infrared range. Opt Express 26: 31510–31522. https://doi.org/10.1364/OE.26.031510 doi: 10.1364/OE.26.031510
    [115] Zhao R, Zou B, Zhang G, et al. (2020) High-sensitivity identification of aflatoxin B1 and B2 using terahertz time-domain spectroscopy and metamaterial-based terahertz biosensor. J Phys D: Appl Phys 53: 195401. https://dx.doi.org/10.1088/1361-6463/ab6f90 doi: 10.1088/1361-6463/ab6f90
    [116] Wu X, Quan B, Pan X, et al. (2013) Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor. Biosens Bioelectron 42: 626–631. https://doi.org/10.1016/j.bios.2012.10.095 doi: 10.1016/j.bios.2012.10.095
    [117] Tang M, Xia L, Wei D, et al. (2020) Rapid and label-free metamaterial-based biosensor for fatty acid detection with terahertz time-domain spectroscopy. Spectrochim Acta A 228: 117736. https://doi.org/10.1016/j.saa.2019.117736 doi: 10.1016/j.saa.2019.117736
    [118] Wang H, Cai J, Wang T, et al. (2024) Functionalized gold nanoparticle enhanced nanorod hyperbolic metamaterial biosensor for highly sensitive detection of carcinoembryonic antigen. Biosens Bioelectron 257: 116295. https://doi.org/10.1016/j.bios.2024.116295 doi: 10.1016/j.bios.2024.116295
    [119] Geng Z, Zhang X, Fan Z, et al. (2017) A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci Rep 7: 16378. https://doi.org/10.1038/s41598-017-16762-y doi: 10.1038/s41598-017-16762-y
    [120] Xu W, Xie L, Zhu J, et al. (2019) Terahertz biosensing with a graphene-metamaterial heterostructure platform. Carbon 141: 247–252. https://doi.org/10.1016/j.carbon.2018.09.050 doi: 10.1016/j.carbon.2018.09.050
    [121] Zhang R, Chen Q, Liu K, et al. (2019) Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples. IEEE Trans Terahertz Sci Technol 9: 209–214. https://doi.org/10.1109/TTHZ.2019.2898390 doi: 10.1109/TTHZ.2019.2898390
    [122] Sugumaran S, Jamlos MF, Ahmad MN, et al. (2018) Nanostructured materials with plasmonic nanobiosensors for early cancer detection: A past and future prospect. Biosens Bioelectron 100: 361–373. https://doi.org/10.1016/j.bios.2017.08.044 doi: 10.1016/j.bios.2017.08.044
    [123] Salim A, Lim S (2018) Review of recent metamaterial microfluidic sensors. Sensors-Basel 18: 232. https://doi.org/10.3390/s18010232 doi: 10.3390/s18010232
    [124] Shamim S, Mohsin ASM, Rahman MM, et al. (2024) Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains. Heliyon 10: e33272. https://doi.org/10.1016/j.heliyon.2024.e33272 doi: 10.1016/j.heliyon.2024.e33272
    [125] RoyChoudhury S, Rawat V, Jalal AH, et al. (2016) Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents. Biosens Bioelectron 86: 595–608. https://doi.org/10.1016/j.bios.2016.07.020 doi: 10.1016/j.bios.2016.07.020
    [126] Hassan MM, Sium FS, Islam F, et al. (2021) A review on plasmonic and metamaterial based biosensing platforms for virus detection. Sens Bio-Sens Res 33: 100429. https://doi.org/10.1016/j.sbsr.2021.100429 doi: 10.1016/j.sbsr.2021.100429
    [127] Verma A, Yadav BC (2024) Comprehensive review on two dimensional nanomaterials for optical biosensors: Present progress and outlook. Sustain Mater Techno 40: e00900. https://doi.org/10.1016/j.susmat.2024.e00900 doi: 10.1016/j.susmat.2024.e00900
    [128] Liu J, Fan L, Su J, et al. (2022) Study on a terahertz biosensor based on graphene-metamaterial. Spectrochim Acta A 280: 121527. https://doi.org/10.1016/j.saa.2022.121527 doi: 10.1016/j.saa.2022.121527
    [129] Tewatia A, Pal S, Pal N (2018) Performance evaluation of surface plasmon resonance biosensor using metamaterial. Mater Today Proc 5: 28384–28391. https://doi.org/10.1016/j.matpr.2018.10.123 doi: 10.1016/j.matpr.2018.10.123
    [130] Nishino T, Tanigawa H, Sekiguchi A (2018) Antifouling technology of metamaterial structure using biomimetic technology. Proc SPIE 2018: 1072804. https://doi.org/10.1117/12.2320471 doi: 10.1117/12.2320471
    [131] Nishino T, Tanigawa H, Sekiguchi A (2018) Antifouling effect on biomimetic metamaterial surfaces. J Photopolym Sci Tec 31: 129–132. https://doi.org/10.2494/photopolymer.31.129 doi: 10.2494/photopolymer.31.129
    [132] Khoshhesab MM, Li Y (2018) Mechanical behavior of 3D printed biomimetic Koch fractal contact and interlocking. Extreme Mech Lett 24: 58–65. https://doi.org/10.1016/j.eml.2018.09.003 doi: 10.1016/j.eml.2018.09.003
    [133] Jiang Y, Li Y (2018) 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores. Sci Rep 8: 2397. https://doi.org/10.1038/s41598-018-20795-2 doi: 10.1038/s41598-018-20795-2
    [134] Jiang Y, Li Y (2018) Novel 3D-printed hybrid auxetic mechanical metamaterial with chirality-induced sequential cell opening mechanisms. Adv Eng Mater 20: 1700744. https://doi.org/10.1002/adem.201700744 doi: 10.1002/adem.201700744
    [135] Yang N, Silverberg JL (2017) Decoupling local mechanics from large-scale structure in modular metamaterials. PNAS 114: 3590–3595. https://doi.org/10.1073/pnas.1620714114 doi: 10.1073/pnas.1620714114
    [136] Wang H, Zhao J, Wang X, et al. (2025) Multi-functional metamaterial based on overdamping effect: Design, investigation, optimization. Int J Mech Sci 286: 109890. https://doi.org/10.1016/j.ijmecsci.2024.109890 doi: 10.1016/j.ijmecsci.2024.109890
    [137] Zeng Q, Zhao Z, Lei H, et al. (2023) A deep learning approach for inverse design of gradient mechanical metamaterials. Int J Mech Sci 240: 107920. https://doi.org/10.1016/j.ijmecsci.2022.107920 doi: 10.1016/j.ijmecsci.2022.107920
    [138] Chang T, Jeon S, Heo M, et al. (2020) Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity. Commun Phys 3: 79. https://doi.org/10.1038/s42005-020-0352-0 doi: 10.1038/s42005-020-0352-0
    [139] Chen Y, Ai B, Wong ZJ (2020) Soft optical metamaterials. Nano Converg 7: 18. https://doi.org/10.1186/s40580-020-00226-7 doi: 10.1186/s40580-020-00226-7
    [140] Duan Y, Xia C, Chen W, et al. (2025) A bio-inspired broadband absorption metamaterial: Driven by dual-structure synergistically induced current vortices. J Mater Sci Technol 206: 193–201. https://doi.org/10.1016/j.jmst.2024.03.053 doi: 10.1016/j.jmst.2024.03.053
    [141] Li G, Tan L, Ren L, et al. (2023) Biomimetic 4D printing of dome-shaped dynamic mechanical metamaterials. J Mater Res Technol 24: 4047–4059. https://doi.org/10.1016/j.jmrt.2023.04.039 doi: 10.1016/j.jmrt.2023.04.039
    [142] Silva B, Govan J, Cristóbal Zagal J, et al. (2023) A biomimetic smart kirigami soft metamaterial with multimodal remote locomotion mechanisms. Mater Des 233: 112262. https://doi.org/10.1016/j.matdes.2023.112262 doi: 10.1016/j.matdes.2023.112262
    [143] Liu L, Li Y (2018) Failure mechanism transition of 3D-printed biomimetic sutures. Eng Fract Mech 199: 372–379. https://doi.org/10.1016/j.engfracmech.2018.06.013 doi: 10.1016/j.engfracmech.2018.06.013
    [144] Jackson JA, Messner MC, Dudukovic NA, et al. (2018) Field responsive mechanical metamaterials. Sci Adv 4: eaau6419. https://doi.org/10.1126/sciadv.aau6419 doi: 10.1126/sciadv.aau6419
    [145] Badloe T, Kim I, Rho J (2020) Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning. Phys Chem Chem Phys 22: 2337–2342. https://doi.org/10.1039/C9CP05621A doi: 10.1039/C9CP05621A
    [146] She W, Wu Z, Yang J, et al. (2024) Cement-based biomimetic metamaterials. J Build Eng 94: 110050. https://doi.org/10.1016/j.jobe.2024.110050 doi: 10.1016/j.jobe.2024.110050
    [147] Ignuta-Ciuncanu MC, Tabor P, Martinez-Botas RF (2024) A generative design framework for passive thermal control with macroscopic metamaterials. Therm Sci Eng Prog 51: 102637. https://doi.org/10.1016/j.tsep.2024.102637 doi: 10.1016/j.tsep.2024.102637
    [148] Vangelatos Z, Yildizdag ME, Grigoropoulos CP (2023) A designer's challenge: Unraveling the architected structure of deep sea sponges for lattice mechanical metamaterials. Extreme Mech Lett 61: 102013. https://doi.org/10.1016/j.eml.2023.102013 doi: 10.1016/j.eml.2023.102013
    [149] Song B, Zhang L, Shi Y (2023) Chapter 5—Biological metamaterials, In: Song B, Zhao A, Zhang L, et al. Metamaterial Design and Additive Manufacturing, New York: Academic Press, 139–221. https://doi.org/10.1016/B978-0-443-18900-5.00005-8
    [150] Wang C, Lu X, Yang X, et al. (2025) Biomimetic Kagome-Gyroid interpenetrating metamaterial for tailoring lightweight and mechanical performance. Mater Des 252: 113729. https://doi.org/10.1016/j.matdes.2025.113729 doi: 10.1016/j.matdes.2025.113729
    [151] De Maio U, Greco F, Fabbrocino F, et al. (2024) Structural stability investigation in bioinspired metamaterials based on glass sponge microstructures. Procedia Struct Integrity 66: 502–510. https://doi.org/10.1016/j.prostr.2024.11.103 doi: 10.1016/j.prostr.2024.11.103
    [152] Gaetano D, Greco F, Leonetti L, et al. (2025) Instability issues in microstructured solids embedding cohesive and contact interfaces. Prog Eng Sci 2: 100082. https://doi.org/10.1016/j.pes.2025.100082 doi: 10.1016/j.pes.2025.100082
    [153] Zadpoor AA (2019) Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater 85: 41–59. https://doi.org/10.1016/j.actbio.2018.12.038 doi: 10.1016/j.actbio.2018.12.038
    [154] Kolken HMA, Garcia AF, Plessis AD, et al. (2022) Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials. Acta Biomater 138: 398–409. https://doi.org/10.1016/j.actbio.2021.11.002 doi: 10.1016/j.actbio.2021.11.002
    [155] Ma T, Huang Q, He H, et al. (2019) All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range. Opt Express 27: 16624–16634. https://doi.org/10.1364/OE.27.016624 doi: 10.1364/OE.27.016624
    [156] Novin SN, Zarrabi FB, Bazgir M, et al. (2019) Field enhancement in metamaterial split ring resonator aperture nano-antenna with spherical nano-particle arrangement. Silicon 11: 293–300. https://doi.org/10.1007/s12633-018-9854-8 doi: 10.1007/s12633-018-9854-8
    [157] Jiang D, Thissen H, Hughes TC, et al. (2024) Advances in additive manufacturing of auxetic structures for biomedical applications. Mater Today Commun 40: 110045. https://doi.org/10.1016/j.mtcomm.2024.110045 doi: 10.1016/j.mtcomm.2024.110045
    [158] Wanniarachchi CT, Arjunan A, Baroutaji A, et al. (2023) 3D printing customised stiffness-matched meta-biomaterial with near-zero auxeticity for load-bearing tissue repair. Bioprinting 33: e00292. https://doi.org/10.1016/j.bprint.2023.e00292 doi: 10.1016/j.bprint.2023.e00292
    [159] Kolken HMA, Garcia AF, Du Plessis A, et al. (2021) Fatigue performance of auxetic meta-biomaterials. Acta Biomater 126: 511–523. https://doi.org/10.1016/j.actbio.2021.03.015 doi: 10.1016/j.actbio.2021.03.015
    [160] Gric T, Sokolovski SG, Navolokin N, et al. (2020) Metamaterial formalism approach for advancing the recognition of glioma areas in brain tissue biopsies. Opt Mater Express 10: 1607–1615. https://doi.org/10.1364/OME.393604 doi: 10.1364/OME.393604
    [161] Naify CJ, Rohde CA, Martin TP, et al. (2016) Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Appl Phys Lett 108: 223503. https://doi.org/10.1063/1.4953075 doi: 10.1063/1.4953075
    [162] Wanniarachchi CT, Arjunan A, Baroutaji A, et al. (2022) Mechanical performance of additively manufactured cobalt-chromium-molybdenum auxetic meta-biomaterial bone scaffolds. J Mech Behav Biomed Mater 134: 105409. https://doi.org/10.1016/j.jmbbm.2022.105409 doi: 10.1016/j.jmbbm.2022.105409
    [163] Kolken HMA, Callens SJP, Leeflang MA, et al. (2022) Merging strut-based and minimal surface meta-biomaterials: Decoupling surface area from mechanical properties. Addit Manuf 52: 102684. https://doi.org/10.1016/j.addma.2022.102684 doi: 10.1016/j.addma.2022.102684
    [164] De Maio U, Greco F, Nevone Blasi P, et al. (2024) Elastic wave propagation control in porous and finitely deformed locally resonant nacre-like metamaterials. Materials 17: 705. https://doi.org/10.3390/ma17030705 doi: 10.3390/ma17030705
    [165] Bollineni RK, Ahmed MS, Shahab S, et al. (2024) Nacre-like block lattice metamaterials with targeted phononic band gap and mechanical properties. J Mech Behav Biomed Mater 154: 106511. https://doi.org/10.1016/j.jmbbm.2024.106511 doi: 10.1016/j.jmbbm.2024.106511
    [166] Pranno A, Greco F, Leonetti L, et al. (2022) Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials. Compos Struct 282: 115032. https://doi.org/10.1016/j.compstruct.2021.115032 doi: 10.1016/j.compstruct.2021.115032
    [167] Huang XT, Lu CH, Rong CC, et al. (2018) Wide angle of incidence-insensitive polarization-independent THz metamaterial absorber for both TE and TM mode based on plasmon hybridizations. Materials 11: 671. https://doi.org/10.3390/ma11050671 doi: 10.3390/ma11050671
    [168] Xia L, Cui HL, Zhang M, et al. (2019) Broadband anisotropy in terahertz metamaterial with single-layer gap ring array. Materials 12: 2255. https://doi.org/10.3390/ma12142255 doi: 10.3390/ma12142255
    [169] Chen Y, Yang X, Tong W, et al. (2019) The simulation on absorption properties of metamaterial/GaAs/electrode layer hybrid structure based Terahertz photoconductive detector. Opt Mater Express 51: 118. https://doi.org/10.1007/s11082-019-1834-8 doi: 10.1007/s11082-019-1834-8
    [170] Zhu W, Rukhlenko ID, Xiao F, et al. (2014) Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking. J Appl Phys 115: 143101. https://doi.org/10.1063/1.4870862 doi: 10.1063/1.4870862
    [171] Zhu W, Rukhlenko ID, Premaratne M (2013) Graphene metamaterial for optical reflection modulation. Appl Phys Lett 102: 241914. https://doi.org/10.1063/1.4812200 doi: 10.1063/1.4812200
    [172] Yi Y, Xu Z, Cai T, et al. (2025) Antireflective all-dielectric metamaterials for thermophotovoltaic systems based on multiresonance. Opt Commun 574: 131229. https://doi.org/10.1016/j.optcom.2024.131229 doi: 10.1016/j.optcom.2024.131229
    [173] Khuyen BX, Hanh VTH, Tung BS, et al. (2020) Narrow/broad-band absorption based on water-hybrid metamaterial. Crystals 10: 415. https://doi.org/10.3390/cryst10050415 doi: 10.3390/cryst10050415
    [174] Vrba D, Vrba J (2014) Applicators for local microwave hyperthermia based on metamaterial technology. The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, Netherlands, 68–71. https://doi.org/10.1109/EuCAP.2014.6901694
    [175] Vrba D, Vrba J (2014) Novel applicators for local microwave hyperthermia based on zeroth-order mode resonator metamaterial. Int J Antennas Propag 2014: 631398. https://doi.org/10.1155/2014/631398 doi: 10.1155/2014/631398
    [176] Peralta XG, Wanke MC, Brener I, et al. (2010) Metamaterial based devices for terahertz imaging. Proc SPIE 2010: 75620I. https://doi.org/10.1117/12.846823 doi: 10.1117/12.846823
    [177] Ciracì C, Centeno E (2009) Focusing of second-harmonic signals with nonlinear metamaterial lenses: A biphotonic microscopy approach. Phys Rev Lett 103: 063901. https://doi.org/10.1103/PhysRevLett.103.063901 doi: 10.1103/PhysRevLett.103.063901
    [178] Munyensanga P, Bricha M, El Mabrouk K (2024) Functional characterization of biomechanical loading and biocorrosion resistance properties of novel additively manufactured porous CoCrMo implant: Comparative analysis with gyroid and rhombic dodecahedron. Mater Chem Phys 316: 129139. https://doi.org/10.1016/j.matchemphys.2024.129139 doi: 10.1016/j.matchemphys.2024.129139
    [179] Rakhshani MR (2021) Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photonic Nanostruct 43: 100883. https://doi.org/10.1016/j.photonics.2020.100883 doi: 10.1016/j.photonics.2020.100883
    [180] Hwang I, Yu J, Lee J, et al. (2018) Plasmon-enhanced infrared spectroscopy based on metamaterial absorbers with dielectric nanopedestals. ACS Photonics 5: 3492–3498. https://doi.org/10.1021/acsphotonics.8b00702 doi: 10.1021/acsphotonics.8b00702
    [181] Faruk A, Sabah C (2019) Absorber and sensor applications of complimentary H-shaped fishnet metamaterial for sub-terahertz frequency region. Optik 177: 64–70. https://doi.org/10.1016/j.ijleo.2018.09.145 doi: 10.1016/j.ijleo.2018.09.145
    [182] Zhang L, Wang B, Song B, et al. (2023) 3D printed biomimetic metamaterials with graded porosity and tapering topology for improved cell seeding and bone regeneration. Bioact Mater 25: 677–688. https://doi.org/10.1016/j.bioactmat.2022.07.009 doi: 10.1016/j.bioactmat.2022.07.009
    [183] Vyavahare S, Mahesh V, Mahesh V, et al. (2023) Additively manufactured meta-biomaterials: A state-of-the-art review. Compos Struct 305: 116491. https://doi.org/10.1016/j.compstruct.2022.116491 doi: 10.1016/j.compstruct.2022.116491
    [184] Dogan E, Bhusal A, Cecen B, et al. (2020) 3D printing metamaterials towards tissue engineering. Appl Mater Today 20: 100752. https://doi.org/10.1016/j.apmt.2020.100752 doi: 10.1016/j.apmt.2020.100752
    [185] Jia Z, Xu X, Zhu D, et al. (2023) Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Prog Mater Sci 134: 101072. https://doi.org/10.1016/j.pmatsci.2023.101072 doi: 10.1016/j.pmatsci.2023.101072
    [186] Zieliński PS, Gudeti PKR, Rikmanspoel T, et al. (2023) 3D printing of bio-instructive materials: Toward directing the cell. Bioact Mater 19: 292–327. https://doi.org/10.1016/j.bioactmat.2022.04.008 doi: 10.1016/j.bioactmat.2022.04.008
    [187] Wu DJ, Bouten CVC, Dankers PYW (2017) From molecular design to 3D printed life-like materials with unprecedented properties. Curr Opin Biomed Eng 2: 43–48. https://doi.org/10.1016/j.cobme.2017.06.001 doi: 10.1016/j.cobme.2017.06.001
    [188] Daniel A, Bakhtiari H, Nouri A, et al. (2025) Fatigue properties of 3D-printed polymeric metamaterials: A review. SMMF 3: 100076. https://doi.org/10.1016/j.smmf.2025.100076 doi: 10.1016/j.smmf.2025.100076
    [189] Sorrentino A, Castagnetti D (2024) Periodic tetrahedral auxetic metamaterial. Extreme Mech Lett 71: 102214. https://doi.org/10.1016/j.eml.2024.102214 doi: 10.1016/j.eml.2024.102214
    [190] Zhao Y, Wu Q, Zhou H, et al. (2024) Investigation on mechanical properties of Ti-6Al-4 V multilayer micro-lattice biomaterials under dynamic compression loading. J Alloy Compd 977: 173419. https://doi.org/10.1016/j.jallcom.2024.173419 doi: 10.1016/j.jallcom.2024.173419
    [191] Ganjian M, Janbaz S, van Manen T, et al. (2022) Controlled metal crumpling as an alternative to folding for the fabrication of nanopatterned meta-biomaterials. Mater Des 220: 110844. https://doi.org/10.1016/j.matdes.2022.110844 doi: 10.1016/j.matdes.2022.110844
    [192] Wanniarachchi CT, Arjunan A, Baroutaji A, et al. (2024) 3D printed CoCrMo personalised load-bearing meta-scaffold for critical size tibial reconstruction. Ann 3D Print Med 15: 100163. https://doi.org/10.1016/j.stlm.2024.100163 doi: 10.1016/j.stlm.2024.100163
    [193] Wang C, Vangelatos Z, Grigoropoulos CP, et al. (2022) Micro-engineered architected metamaterials for cell and tissue engineering. Mater Today Adv 13: 100206. https://doi.org/10.1016/j.mtadv.2022.100206 doi: 10.1016/j.mtadv.2022.100206
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1657) PDF downloads(113) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog