Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio

1 School of Statistics and Mathematics, Guangdong University of Finance and Economics,Guangzhou 510320, China
2 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
3 Center for Applied Mathematics,4College of Mathematics and Information Sciences,Guangzhou University, Guangzhou 510006, China

Special Issues: Recent Advances in Mathematical Population Dynamics

To control mosquito-borne diseases such as dengue, malaria, and Zika, Wolbachia-infected male mosquitoes have been released in open areas to suppress wild mosquito population driven by cytoplasmic incompatibility (CI). In this work, we initiate a preliminary assessment on how the CI intensity ξ, and the mating competitiveness µ of released males relative to wild males, impact the suppression efficacy by a delay differential equation model. Our analysis identifies a threshold CI intensity ξ0 ∈ (0,1) as an increasing function of the natural reproduction rate of the wild mosquitoes, and a threshold value r for the ratio r(t) between the numbers of released males and wild males. The population suppression fails when ξ ≤ ξ0 , and succeeds when ξ > ξ0 and r(t) ≥ r . Our analyses indicate that ξ plays a more important role than µ in the population suppression. For instance, a slight decrease of ξ from 1 to 0.92 is more devastating than halving µ from 1 to 0.5. In our estimation of the optimal starting date for infected male release to target a more than 95% wild population reduction during the peak season of dengue in Guangzhou, we find that the optimal date is almost independent of µ but is sensitive to ξ. If CI is complete, then starting about two months ahead can be an optimal option for less financial and labor costs. A slight reduction in the CI intensity requires a considerably earlier starting date.
  Article Metrics

Keywords mosquito-born diseases; Wolbachia; cytoplasmic incompatibility; mosquito population suppression; delay differential equation

Citation: Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio. Mathematical Biosciences and Engineering, 2019, 16(5): 4741-4757. doi: 10.3934/mbe.2019238


  • 1. S. Bhatt, P. W. Gething, O. J. Brady, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504–507.
  • 2. N.G.Gratz, Critical review of the vector status of Aedes albopictus, Med.Vet.Entomol., 18(2004), 215–227.
  • 3. H. Lin, T. Liu, T. Song, et al., Community involvement in dengue outbreak control: An integrated rigorous intervention strategy, PLoS Negl. Trop. Dis., 10 (2016), e0004919.
  • 4. B. Zheng, J. Yu, Z. Xi, et al., The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model., 387 (2018), 38–48.
  • 5. Z. Xi, C. C. Khoo and S. L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005), 326–328.
  • 6. T. Walker, P. H. Johnson, L. A. Moreika, et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450–453.
  • 7. E. Waltz, US reviews plan to infect mosquitoes with bacteria to stop disease, Nature, 89 (2016), 450–451.
  • 8. D. Zhang, X. Zheng, Z. Xi, et al., Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10 (2015), e0121126.
  • 9. M. S. Blagrove, C. Arias-Goata, A. B. Failloux, et al., Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus, Proc. Natl. Acad. Sci. USA, 109 (2012), 255–260.
  • 10. A. A. Hoffmann, B. L. Montgomery, J. Popovici, et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, 476 (2011), 454–457.
  • 11. D. Zhang, R. S. Lees, Z. Xi, et al., Combining the sterile insect technique with Wolbachia-based approaches: II-a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release, PLoS One, 10 (2015), e1427.
  • 12. X. Wang, S. Tang and R. A. Cheke, A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations, J. Theor. Biol., 411 (2016), 27–36.
  • 13. X. Zhang, S. Tang, R. A. Cheke, et al., Modeling the effects of augmentation strategies on the control of dengue fever with an impulsive differential equation, Bull. Math. Biol., 78 (2016), 1968–2010.
  • 14. B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math., 74 (2014), 743–770.
  • 15. M. Huang, M. Tang and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58 (2015), 77–96.
  • 16. M. Huang, J. Yu, L. Hu, et al., Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 59 (2016), 1249–1266.
  • 17. L. Hu, M. Huang, M. Tang, et al., Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106 (2015), 32–44.
  • 18. L. Hu, M. Huang, M. Tang, et al., Wolbachia spread dynamics in multi-regimes of environmental conditions, J. Theor. Biol., 462 (2019), 247–258.
  • 19. L. Hu, M. Tang, Z. Wu, et al., The threshold infection level for Wolbachia invasion in random environments, J. Diff. Equ., 266 (2019), 4377–4393.
  • 20. B. Zheng, W. Guo, L. Hu, et al., Complex Wolbachia infection dynamics in mosquitoes with imperfect maternal transmission, Math. Biosci. Eng., 15 (2018), 523–541.
  • 21. B. Zheng, M. Tang, J. Yu, et al., Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235–263.
  • 22. B. Zheng and J. Yu, Characterization of Wolbachia enhancing domain in mosquitoes with imper-fect maternal transmission, J. Biol. Dyn., 12 (2018), 596–610.
  • 23. M. Huang, L. Hu and B. Zheng, Comparing the efficiency of Wolbachia driven Aedes mosquito suppression strategies, J. Appl. Anal. Comput., 9 (2019), 1–20.
  • 24. M. Huang, J. Lou, L. Hu, et al., Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440 (2018), 1–11.
  • 25. J. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168–3187.
  • 26. B. Zheng, X. Liu, M. Tang, et al., Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control, J. Theor. Biol., 472 (2019), 95–109.
  • 27. Y. Li, F. Kamara, G. Zhou, et al., Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship, PLoS Negl. Trop. Dis., 8 (2014), e3301.
  • 28. F. Liu, C. Zhou and P. Lin, Studies on the population ecology of Aedes albopictus 5. The sea-sonal abundance of natural population of Aedes albopictus in Guangzhou, Acta Sci. Natur. Univ. Sunyatseni, 29 (1990), 118–122.
  • 29. F. Liu, C. Yao, P. Lin, et al., Studies on life table of the natural population of Aedes albopictus, Acta Sci. Natur. Univ. Sunyatseni, 31 (1992), 84–93.
  • 30. H. I. Freedman, Deterministic mathematical models in population ecology, 2nd edition, HIFR Consulting LTD, Edmonton, 1987.
  • 31. H. L. Smith, An introduction to delay differential equations with applications to life sciences, Springer-Verlag, New York, 2011.
  • 32. S. Lee, Development of eggs, larvae and pupae of Aedes albopictus (Skuse) (Diptera: Culicidae), Chinese J. Entomol., 14 (1994), 13–32.
  • 33. Z. Liu, Y. Zhang and Y. Yang, Population dynamics of Aedes (Stegomyia) albopictus (Skuse) under laboratory conditions, Acta Entomol. Sin., 28 (1985), 274–280.
  • 34. L. Zhang, L. Tan, H. Ai, et al., Laboratory and field studies on the oviposition pattern of Aedes albopictus, Acta Parasitol. Et. Med. Entomol. Sin., 16 (2009), 219–223.
  • 35. Z. Zhong and G. He, The life table of laboratory Aedes albopictus under various temperatures, Academic J. Sun Yat-sen Univ. Med. Sci., 9 (1988), 35–39.
  • 36. Y. Wang, X. Liu, C. Li, et al., A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China, J. Econ. Entomol., 110 (2017), 239–244.


This article has been cited by

  • 1. Yijie Li, Zhiming Guo, Yanyuan Xing, Modeling Wolbachia Diffusion in Mosquito Populations by Discrete Competition Model, Discrete Dynamics in Nature and Society, 2020, 2020, 1, 10.1155/2020/8987490
  • 2. Genghong Lin, Yuanxian Hui, Stability analysis in a mosquito population suppression model, Journal of Biological Dynamics, 2020, 14, 1, 578, 10.1080/17513758.2020.1792565
  • 3. Mugen Huang, Linchao Hu, Modeling the suppression dynamics of Aedes mosquitoes with mating inhomogeneity, Journal of Biological Dynamics, 2020, 14, 1, 656, 10.1080/17513758.2020.1799083
  • 4. Yantao Shi, Jianshe Yu, Wolbachia infection enhancing and decaying domains in mosquito population based on discrete models, Journal of Biological Dynamics, 2020, 14, 1, 679, 10.1080/17513758.2020.1805035
  • 5. Jianshe Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, Journal of Differential Equations, 2020, 269, 12, 10395, 10.1016/j.jde.2020.07.019

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved