Citation: Tao Zhang, Hao Zhang, Ran Wang, Yunda Wu. A new JPEG image steganalysis technique combining rich model features and convolutional neural networks[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4069-4081. doi: 10.3934/mbe.2019201
[1] | Mengshi Shu, Rui Fu, Wendi Wang . A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1361-1377. doi: 10.3934/mbe.2017070 |
[2] | Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426 |
[3] | Frédéric Mazenc, Gonzalo Robledo, Daniel Sepúlveda . A stability analysis of a time-varying chemostat with pointwise delay. Mathematical Biosciences and Engineering, 2024, 21(2): 2691-2728. doi: 10.3934/mbe.2024119 |
[4] | Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629 |
[5] | Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329 |
[6] | Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020 |
[7] | Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319 |
[8] | Manel Dali Youcef, Alain Rapaport, Tewfik Sari . Study of performance criteria of serial configuration of two chemostats. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332 |
[9] | Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539 |
[10] | Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024 |
[1] | V. Holub and J. Fridrich, Low-complexity features for jpeg steganalysis using undecimated DCT, IEEE Trans. Inf. Fore. Secu., 10(2015), 219–228. |
[2] | J. Fridrich and J. Kodovsky, Rich models for steganalysis of digital images, IEEE Trans. Inf. Fore. Secu., 7(2012), 868–882. |
[3] | V. Holub and J. Fridrich, Phase-aware projection model for steganalysis of JPEG images, Proc. SPIE, 9409(2015), 1–11. |
[4] | J. Kodovsky, J. Fridrich and V. Holub, Ensemble classifiers for steganalysis of digital media, IEEE Trans. Inf. Fore. Secu., 7(2012), 432–444. |
[5] | J. Fridrich, Steganalysis in high dimensions: fusing classifiers built on random subspaces, Proc. SPIE, 7880(2011), 181–197. |
[6] | V. Holub and J. Fridrich, Random projections of residuals for digital image steganalysis, IEEE Trans. Inf. Fore. Secu., 8(2013), 1996–2006. |
[7] | J. Kodovský and J. Fridrich, Steganalysis in high dimensions: fusing classifiers built on random subspaces, Proc. SPIE, 7880(2011), 1–13. |
[8] | S. Tan and B. Li, Stacked convolutional auto-encoders for steganalysis of digital images, Proc. IEEE APSIPA, Siem Reap, Cambodia, (2014), 1–4. |
[9] | T. Pevný, T. Filler and P. Bas, Using high-dimensional image models to perform highly undetectable steganography, Proc. IHW, (2010), 161–177. |
[10] | Y. Qian, J. Dong and W. Wang, Deep learning for steganalysis via convolutional neural networks, Proc. SPIE, 9409(2015), 1–10. |
[11] | V. Holub and J. Fridrich, Designing steganographic distortion using directional filters, Proc. IEEE IFS, (2012), 234–239. |
[12] | V. Holub, J. Fridrich and T. Denemark, Universal distortion function for steganography in an arbitrary domain, EURASIP J. Info. Sec., 2014(2014), 1–13. |
[13] | L. Pibre L, J. Pasquet and D. Ienco, Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch, Proc. EI'2016, (2016), 79–95. |
[14] | Mo Chen, V. Sedighi, M. Boroumand, et al., JPEG-phase-aware convolutional neural network for steganalysis of JPEG images, Proc. IH MMSec, (2017), 1–10. |
[15] | J. Zeng, S. Tan, B. Li, et al., Large-scale JPEG image steganalysis using hybrid deep-learning framework, IEEE Trans. Info. Forens. Secu., 13(2018), 1200–1214. |
[16] | G. Xu, Deep convolutional neural network to detect JUNIWARD, Proc. IH MMSec, (2017), 1–6. |
[17] | M. Boroumand, M. Chen and J. Fridrich, Deep residual network for steganalysis of digital images. IEEE Trans. Info. Fore. Secu., 14(2019), 1181–1193. |
[18] | L. Chang, X. Den and M. Zhou, Convolution neural networks in image understanding, Acta Automat. Sinica, 42(2016), 1300–1312. |
[19] | X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, J. Mach. Lear. Rese., 9(2010), 249–256. |
[20] | S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proc. ICML, (2015), 448–456. |
[21] | N. Srivastava, G. Hinton and A. Krizhevsky, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Lear. Rese., 15(2014), 1929–1958. |
[22] | L. Guo, J. Ni and Y. Shi, Uniform embedding for efficient JPEG steganography, IEEE Trans. Info. Fore. Secu., 9(2014), 814–825. |
[23] | J. Bergstra, O. Breuleux and F. Bastien, Theano: A CPU and GPU math compiler in Python, Proc. PSC, (2010), 1–7. |
1. | Xinzhi Ren, Xianning Liu, A competition un-stirred chemostat model with virus in an aquatic system, 2019, 98, 0003-6811, 2329, 10.1080/00036811.2018.1460811 | |
2. | Wendi Wang, Rui Fu, Mengshi Shu, A bacteriophage model based on CRISPR/Cas immune system in a chemostat, 2017, 14, 1551-0018, 1361, 10.3934/mbe.2017070 | |
3. | Saptarshi Sinha, Rajdeep K. Grewal, Soumen Roy, 2018, 103, 9780128151839, 103, 10.1016/bs.aambs.2018.01.005 | |
4. | Saptarshi Sinha, Rajdeep Kaur Grewal, Soumen Roy, 2020, Chapter 18, 978-1-0716-0388-8, 309, 10.1007/978-1-0716-0389-5_18 | |
5. | Sukhitha W. Vidurupola, Analysis of deterministic and stochastic mathematical models with resistant bacteria and bacteria debris for bacteriophage dynamics, 2018, 316, 00963003, 215, 10.1016/j.amc.2017.08.022 | |
6. | Daniel A. Korytowski, Hal L. Smith, How nested and monogamous infection networks in host-phage communities come to be, 2015, 8, 1874-1738, 111, 10.1007/s12080-014-0236-6 | |
7. | Saroj Kumar Sahani, Sunita Gakkhar, A Mathematical Model for Phage Therapy with Impulsive Phage Dose, 2020, 28, 0971-3514, 75, 10.1007/s12591-016-0303-0 | |
8. | Sukhitha W. Vidurupola, Linda J. S. Allen, Impact of Variability in Stochastic Models of Bacteria-Phage Dynamics Applicable to Phage Therapy, 2014, 32, 0736-2994, 427, 10.1080/07362994.2014.889922 | |
9. | WENDI WANG, DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT, 2017, 25, 0218-3390, 697, 10.1142/S0218339017400010 | |
10. | Hayriye Gulbudak, Paul L. Salceanu, Gail S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, 2021, 82, 0303-6812, 10.1007/s00285-021-01612-3 | |
11. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Htoo Kyaw Hlaing, Stability analysis and persistence of a phage therapy model, 2021, 18, 1551-0018, 5552, 10.3934/mbe.2021280 | |
12. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Stability and Hopf Bifurcation Analysis for a Phage Therapy Model with and without Time Delay, 2023, 12, 2075-1680, 772, 10.3390/axioms12080772 | |
13. | Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Hopf bifurcation analysis of a phage therapy model, 2023, 18, 2157-5452, 87, 10.2140/camcos.2023.18.87 | |
14. | Zainab Dere, N.G. Cogan, Bhargav R. Karamched, Optimal control strategies for mitigating antibiotic resistance: Integrating virus dynamics for enhanced intervention design, 2025, 00255564, 109464, 10.1016/j.mbs.2025.109464 | |
15. | Carli Peterson, Darsh Gandhi, Austin Carlson, Aaron Lubkemann, Emma Richardson, John Serralta, Michael S. Allen, Souvik Roy, Christopher M. Kribs, Hristo V. Kojouharov, A SIMPL Model of Phage-Bacteria Interactions Accounting for Mutation and Competition, 2025, 87, 0092-8240, 10.1007/s11538-025-01478-2 |