
Citation: Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang. Modelling and analysis of an alcoholism model with treatment and effect of Twitter[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3561-3622. doi: 10.3934/mbe.2019179
[1] | Baojun Song, Wen Du, Jie Lou . Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1651-1668. doi: 10.3934/mbe.2013.10.1651 |
[2] | Jiaxin Nan, Wanbiao Ma . Stability and persistence analysis of a microorganism flocculation model with infinite delay. Mathematical Biosciences and Engineering, 2023, 20(6): 10815-10827. doi: 10.3934/mbe.2023480 |
[3] | Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033 |
[4] | Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024 |
[5] | Guangming Qiu, Zhizhong Yang, Bo Deng . Backward bifurcation of a plant virus dynamics model with nonlinear continuous and impulsive control. Mathematical Biosciences and Engineering, 2024, 21(3): 4056-4084. doi: 10.3934/mbe.2024179 |
[6] | Zehan Liu, Daoxin Qiu, Shengqiang Liu . A two-group epidemic model with heterogeneity in cognitive effects. Mathematical Biosciences and Engineering, 2025, 22(5): 1109-1139. doi: 10.3934/mbe.2025040 |
[7] | Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś . Gompertz model with delays and treatment: Mathematical analysis. Mathematical Biosciences and Engineering, 2013, 10(3): 551-563. doi: 10.3934/mbe.2013.10.551 |
[8] | Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337 |
[9] | Ya-Dong Zhang, Hai-Feng Huo, Hong Xiang . Dynamics of tuberculosis with fast and slow progression and media coverage. Mathematical Biosciences and Engineering, 2019, 16(3): 1150-1170. doi: 10.3934/mbe.2019055 |
[10] | Haifeng Zhang, Jinzhi Lei . Optimal treatment strategy of cancers with intratumor heterogeneity. Mathematical Biosciences and Engineering, 2022, 19(12): 13337-13373. doi: 10.3934/mbe.2022625 |
The harmful use of alcohol causes a large disease, social and economic burden in societies. In 2012, about 3.3 million deaths, or 5.9% of all global deaths, were attributable to alcohol consumption. Alcohol consumption can have an impact not only on the incidence of diseases, injuries and other health conditions, but also on the course of disorders and their outcomes in individuals [1]. According to a research report by the Shanghai Institute of Environmental Economics, the number of patients due to alcoholism has increased by 28.5 times, and the number of deaths has increased by 30.6 times in the past seven years [2]. Thus, it is very important to study drinking behavior.
Recently, many authors have studied mathematical models of drinking [3,4,5,6,7,8,9]. Bani et al. [3] studied the influence of environmental factors on college alcohol drinking patterns. Mulone et al. [4] developed a two-stage (four compartments) model for youths with serious drinking problems and their treatment, and the stability of all the equilibria was obtained. Mushayabasa et al. [5] formulated a deterministic model for evaluating the impact of heavy alcohol drinking on the reemerging gonorrhea epidemic. Lee et al. [6] studied the optimal control intervention strategies in low- and high-risk problem drinking populations. Mubayi et al. [7] studied the impact of relative residence times on the distribution of heavy drinkers in highly distinct environments and found that alcohol consumption is a function of social dynamics, environmental contexts, individuals' preferences and family history. Huo, Chen and Xiang [8] introduced a more realistic binge drinking model with time delay, in which time delay is used to represent the time lag of the immunity against drinking. Xiang, Liu and Huo [9] proposed a new SAIRS alcoholism model with birth and death on complex heterogeneous networks.
Media coverage is one of the effective ways to control alcoholism or infectious diseases, many authors have studied alcoholism or epidemic models with media coverage [10,11,12,13,14]. Cui et al. [10] developed a three dimensional compartmental model to investigate the impact of media coverage to the spread and control of infectious diseases. Pawelek et al. [11] studied the impact of twitter on influenza epidemics. Huo and Zhang [12] introduced a more realistic mathematical influenza model including dynamics of Twitter, which might reduce and increase the spread of influenza. Huo and Zhang [13] formulated a novel alcoholism model which involved impact of Twitter and investigated the occurrence of backward, forward bifurcation and Hopf bifurcation. Huo and Yang [14] introduced a novel SEIS epidemic model with the impact of media. Above results show that media coverage can regard as a good indicator in controlling the emergence and spread of the epidemic disease or alcoholism. Many scholars have done a lot of researches on drinking or infectious diseases with or without media coverage [15,16,17,18,19,20,21,22].
Alcoholism can be defined as a pattern of alcohol use that compromises the health and safety of oneself and others. There are a variety of treatment methods currently available, such as behavioral treatments, medications and mutual-support Groups [23]. The goal of a person pursuing treatment is to abstain from alcohol or to cut back on drinking. Many people have studied the epidemic or alcoholism models with treatment [24,25,26].
Motivated by the above [13,14], we set up a new alcoholism model with treatment and effect of Twitter in this paper. We derive the basic reproductive number of the model and study the stability of our model. Furthermore, we investigate the occurrence of backward and forward bifurcation.
The organization of this paper is as follows: In Section 2, we present a new alcoholism model with treatment and effect of Twitter. In Section 3, we derive the basic reproductive number and study the stability of all equilibria. We also study the occurrence of backward and forward bifurcation. In Section 4, we perform some numerical simulations to illustrate and extend our main results. Sensitivity analysis and some discussion are given in last section.
The total population in this model is divided into four compartments: S(t), L(t), H(t), R(t). S(t) represents the number of moderate drinkers, that is, the people who do not drink or drink within daily and weekly limits [13]. L(t) represents the number of light problem drinkers, that is, the drinkers who drink beyond daily or weekly ceiling [13]. H(t) represents the number of heavy problem drinkers, that is, the drinkers who drink far more than daily and weekly limits [13]. R(t) represents the number of quitting drinkers, that is, the people who quit problem drinking by treatment permanently. T(t) represents the number of messages that Twitter provide about alcoholism at time t. The total number of population at time t is given by
N(t)=S(t)+L(t)+H(t)+R(t). |
The population flowing among those compartments is shown in the following diagram (Figure 1).
The diagram leads to the following system of ordinary differential equations:
{dSdt=Λ+qH−βSHe−αT−α1S,dLdt=βSHe−αT−ρL−α1L,dHdt=ρL−γH−qH−(α1+α2)H,dRdt=γH−α1R,dTdt=μ1S+μ2L+μ3H+μ4R−τT. | (2.1) |
Where all the parameters are positive constants and Λ is the recruitment rate of the population. α1 is the natural death rate. α2 is the alcoholism-related death rate. β is the rate of transmission between moderate drinkers and heavy problem drinkers, and it is reduced by a factor e−αT due to the behavior change of the public after reading information about alcoholism. α is the coefficient that determines how effective the drinking information can reduce the transmission rate. τ is outdated-rate of tweets. ρ is the transmission rate from the light problem drinkers to the heavy problem drinkers. After treatment, the transfer rate of the heavy problem drinkers to the moderate drinkers is q, the transfer rate of the heavy problem drinkers to the quitting drinkers is γ. μi(i=1,2,3,4) are the rates that moderate drinkers, light problem drinkers, heavy problem drinkers and quitting drinkers may tweet about alcoholism during an alcoholism occasion, respectively.
Adding the first four equations of system (2.1), we have
dNdt=dSdt+dLdt+dHdt+dRdt=Λ−α1N−α2H≤Λ−α1N. |
Then it follows that limt→∞supN(t)≤Λα1.
According to the fifth equation of system (2.1), we obtain
dTdt=μ1S+μ2L+μ3H+μ4R−τT≤Λ(μ1+μ2+μ3+μ4)α1−τT, |
then it follows that limt→∞supT(t)≤Λ(μ1+μ2+μ3+μ4)α1τ, so the set is
Ω={(S,L,H,R,T)∈R5+:0≤S,L,H,R≤N≤Λα1,0≤T≤Λ(μ1+μ2+μ3+μ4)α1τ}. | (2.2) |
Therefore, we will consider the global stability of system (2.1) on the set Ω.
It is easy to see that system (2.1) always has a alcohol free equilibrium P0=(S0,L0,H0,R0,T0), where
S0=Λα1,L0=0,H0=0,R0=0,T0=Λμ1α1τ. |
By applying the method of the next generation matrix in [27], we obtain the basic reproduction number R0. System (2.1) can be written as
dxdt=F(x)−V(x), |
where x=(L,S,H,R,T)T,
F(x)=(βSHe−αT0000),and V(x)=(ρL+α1L−Λ−qH+βSHe−αT+α1S−ρL+qH+γH+(α1+α2)H−γH+α1R−μ1S−μ2L−μ3H−μ4R+τT). |
The Jacobian matrices of F(x) and V(x) at the alcohol free equilibrium P0 are
DF(P0)=(00Λβα1e−αμ1Λα1τ0000000000000000000000), |
and
DV(P0)=(ρ+α100000α1Λβα1e−αμ1Λα1τ−q00−ρ0α1+α2+q+γ0000−γα10−μ2−μ1−μ3−μ4τ). |
Therefore, the basic reproduction number R0 is
R0=Λβρe−αμ1Λα1τα1(α1+ρ)(α1+α2+q+γ). | (3.1) |
Theorem 1. When R0<1 and T(t)≥Λμ1α1τ, the alcohol free equilibrium P0 of system (2.1) is globally asymptotically stable; When R0<1 and T(t)<Λμ1α1τ, the alcohol free equilibrium P0 of system (2.1) is locally asymptotically stable; When R0>1, the alcohol free equilibrium P0 of system (2.1) is unstable.
Proof. The characteristic equation of the system (2.1) at the alcohol free equilibrium P0 is
|λ+α10Λβα1e−αμ1Λα1τ−q000λ+(α1+ρ)−Λβα1e−αμ1Λα1τ000−ρλ+(α1+α2+q+γ)0000−γλ+α10−μ1−μ2−μ3−μ4λ+τ|=0. | (3.2) |
Therefore, Eq.(3.2) can be written as
(λ+τ)(λ+α1)2[(λ+(α1+ρ))(λ+(α1+α2+q+γ))−Λβρα1e−αμ1Λα1τ]=0. | (3.3) |
Therefore, the three eigenvalues of the Eq.(3.2) are λ1=−τ, λ2=−α1, λ3=−α1, and the other eigenvalues are determined by the equation
(λ+(α1+ρ))(λ+(α1+α2+q+γ))−Λβρα1e−αμ1Λα1τ=0. | (3.4) |
Therefore, the Eq.(3.4) can be written as
λ2+λ(2α1+α2+q+γ+ρ)+(α1+ρ)(α1+α2+q+γ)(1−R0)=0. | (3.5) |
By Viete theorem, we have
λ4+λ5=−(2α1+α2+q+γ+ρ)<0, |
and
λ4λ5=(α1+ρ)(α1+α2+q+γ)(1−R0). |
Thus, when R0<1, the alcohol free equilibrium P0 is locally asymptotically stable; when R0>1, the alcohol free equilibrium P0 is unstable.
Define the Lyapunov function
M(S,L,H,R,T)=ρL(t)+(α1+ρ)H(t). |
It is clear that M(t)≥0 and the equality holds if and only if L(t)=H(t)=0. Differentiating M(S,L,H,R,T) and from the Eq.(2.2), we obtain S(t)≤Λα1. Therefore, when T(t)≥Λμ1α1τ, we have
dM(S,L,H,R,T)dt=ρdL(t)dt+(α1+ρ)dH(t)dt=ρ(βSHe−αT−(α1+ρ)L)+(α1+ρ)(ρL−(α1+α2+γ+q)H)=[ρβSe−αT−(α1+ρ)(α1+α2+γ+q)]H≤[Λβρα1e−αμ1Λα1τ−(α1+ρ)(α1+α2+γ+q)]H=(α1+ρ)(α1+α2+γ+q)H[Λβρe−αμ1Λα1τα1(α1+ρ)(α1+α2+γ+q)−1]=(α1+ρ)(α1+α2+γ+q)H[R0−1]. | (3.6) |
It follows that M(S,L,H,R,T) is bounded and non-increasing. Thus, limt→∞M(S,L,H,R,T) exists. Note that R0<1 guarantees that dM(S,L,H,R,T)dt≤0 for all t≥0. Consequently, for system (2.1) there holds
limt→∞L(t)=0,limt→∞H(t)=0. |
Hence, by LaSalle's Invariance Principle [28], the alcohol free equilibrium is globally attractive. We show that the alcohol free equilibrium P0 is globally asymptotic stability when R0<1.
Theorem 2. (Ⅰ) When θ=0 and R0>1, the system (2.1) has a unique positive alcoholism equilibrium P∗0;
(Ⅱ)When θ≠0 and R0>max{R01,1}, the system (2.1) has a unique positive alcoholism equilibrium P∗1;
(Ⅲ)When R02=R0<min{R01,1}, the system (2.1) has a unique positive alcoholism equilibrium P∗2;
(Ⅳ)When R02<R0<min{R01,1}, the system (2.1) has two different positive alcoholism equilibria P∗3 and P∗4.
Proof. Assuming the right-hand sides of system (2.1) is 0, we have
{Λ+qH−βSHe−αT−α1S=0,βSHe−αT−ρL−α1L=0,ρL−γH−qH−(α1+α2)H=0,γH−α1R=0,μ1S+μ2L+μ3H+μ4R−τT=0. | (3.7) |
Let (S,L,H,R,T)=(S∗,L∗,H∗,R∗,T∗) be the solution of Eq.(3.7), we have
{Λ+qH∗−βS∗H∗e−αT∗−α1S∗=0,βS∗H∗e−αT∗−ρL∗−α1L∗=0,ρL∗−γH∗−qH∗−(α1+α2)H∗=0,γH∗−α1R∗=0,μ1S∗+μ2L∗+μ3H∗+μ4R∗−τT∗=0. | (3.8) |
By Eq.(3.8), we obtain
S∗=Λα1+[ρq−(α1+ρ)(α1+α2+γ+q)]H∗α1ρ, | (3.9) |
L∗=(α1+α2+γ+q)H∗ρ, | (3.10) |
R∗=γH∗α1, | (3.11) |
T∗=Λμ1α1τ+H∗α1ρτ[μ1qρ−μ1(α1+ρ)(α1+α2+q+γ)+α1μ2(α1+α2+q+γ)+α1μ3ρ+γμ4ρ]. | (3.12) |
Combine the above Eqs.(3.9)-(3.12) and the first equation of Eq.(3.8), we have
[1−θH∗R01]R0=e−θH∗, | (3.13) |
where
R01=Λρθ(α1+ρ)(α1+α2+q+γ)−ρq, | (3.14) |
and
θ=−α[μ1qρ−μ1(α1+ρ)(α1+α2+q+γ)+α1μ2(α1+α2+q+γ)+α1μ3ρ+γμ4ρ]α1ρτ. | (3.15) |
For the sake of simplicity, we define
R02=R01e1−R01. | (3.16) |
In what follows, we assume
F(H∗)=R0−R0R01θH∗−e−θH∗. | (3.17) |
Thus
F′(H∗)=θe−θH∗−R0R01θ, | (3.18) |
F″(H∗)=−θ2e−θH∗. | (3.19) |
The following work is to discuss the properties of Eq.(3.17).
(Ⅰ) When θ=0 and R0>1, the existence of the unique alcoholism equilibrium P∗0 of system (2.1) can be obtained by Eq.(3.13), as shown in line L4 of Figure 2, where
H∗0=Λρ(α1+ρ)(α1+α2+q+γ)−ρq(1−1R0),S∗0=Λα1−Λα1(1−1R0),L∗0=Λ(α1+α2+q+γ)(α1+ρ)(α1+α2+q+γ)−ρq(1−1R0),R∗0=Λγρα1[(α1+ρ)(α1+α2+q+γ)−ρq](1−1R0),T∗0=Λμ1α1τ+Λα1τ[(α1+ρ)(α1+α2+q+γ)−ρq][μ1qρ+α1μ3ρ+γμ4ρ+α1μ2(α1+α2+q+γ)−μ1(α1+ρ)(α1+α2+q+γ)](1−1R0). |
(Ⅱ) When θ≠0 and R0>1, we have F(0)=R0−1>0 and F(∞)=−∞<0. Assume that F′(H∗)<θ(1−R0R01). Thus, when θ>0 and R0>R01 or θ<0, we obtain F′(H∗)<0. Therefore, there is a unique positive solution for Eq.(3.17). Thus, the alcoholism equilibrium P∗1=(S∗1,L∗1,H∗1,R∗1,T∗1) can be obtained, as shown in regions ΩA and ΩB of Figure 2.
(Ⅲ) When θ>0 and R0<1, we have F(0)=R0−1<0, F(∞)=−∞<0 and F″(H∗)<0. Assume that F′(H∗)=θe−θH∗−R0R01θ=θ(e−θH∗−R0R01). If F′(H∗)=0, Eq.(3.17) has the unique positive solution H∗2=1θln(R01R0) when R0<R01. Meanwhile, we also have
F(H∗2)=R0−R0R01θH∗2−e−θH∗2=0. |
Therefore, we obtain R0=R02=R01e(1−R01). Thus, the alcoholism equilibrium P∗2=(S∗2,L∗2,H∗2,R∗2,T∗2) can be obtained, as shown in line L2 of Figure 2.
(Ⅳ) When R02<R0<1, we have F(H∗2)>0. Eq.(3.17) has two different positive solutions H∗3 and H∗4, where H∗3 and H∗4 satisfy the following condition H∗3<H∗2<H∗4. Thus, the alcoholism equilibria P∗3=(S∗3,L∗3,H∗3,R∗3,T∗3) and P∗4=(S∗4,L∗4,H∗4,R∗4,T∗4) can be obtained, as shown in region ΩE of Figure 2.
Remark 1. For simplicity, the six curves (Li,i=1,2,3,4,5,6) divide the space in which R0 and θ are located into seven regions as shown in Figure 2.
L1:R0=R01(θ),withR0>1,L2:R0=R01(θ)e1−R01(θ),withR0<min{R01(θ),1},L3:θ=0,withR0<1,L4:θ=0,withR0>1,L5:R0=R01(θ)e1−R01(θ),withR01(θ)<R0<1,L6:R0=1. |
In this section, we study the local stability of the alcoholism equilibria P∗i(i=0,1,2,3,4). First we obtain the characteristic matrix of system (2.1) at the alcoholism equilibria P∗i(i=0,1,2,3,4), as follows
|λ+βH∗ie−αT∗i+α10βS∗ie−αT∗i−q0−αβS∗iH∗ie−αT∗i−βH∗ie−αT∗iλ+(α1+ρ)−βS∗ie−αT∗i0αβS∗iH∗ie−αT∗i0−ρλ+(α1+α2+q+γ)0000−γλ+α10−μ1−μ2−μ3−μ4λ+τ|=0. | (3.20) |
In order to simplify Eq.(3.20), we have
Φ=βe−αT∗i=α1(α1+ρ)(α1+α2+γ+q)e−αT∗iΛρe−Λαμ1α1τR0=α1(α1+ρ)(α1+α2+γ+q)eθH∗iΛρR0, |
ΦS∗i=(α1+ρ)(α1+α2+γ+q)ρ=ΛθR01+q. |
Then the characteristic equation can be rewritten as:
(λ+α1)G(λ)=0, | (3.21) |
G(λ)=λ4+a1(H∗i)λ3+a2(H∗i)λ2+a3(H∗i)λ+a4(H∗i)=0, | (3.22) |
where
a1(H∗i)=3α1+α2+q+γ+ρ+τ+H∗iΦ, | (3.23) |
a2(H∗i)=(2α1+α2+q+γ+ρ+τ)(α1+H∗iΦ)+(2α1+α2+q+γ+ρ)τ+αH∗i(ΛθR01+q)(μ2−μ1), | (3.24) |
a3(H∗i)=(2α1+α2+q+γ+ρ)(α1+H∗iΦ)τ+(α1+α2+q+γ)α1H∗iΦ+(α1+α2+γ)ρH∗iΦ+αH∗i(ΛθR01+q)[(2α1+α2+q+γ)(μ2−μ1)+ρ(μ3−μ1)], | (3.25) |
a4(H∗i)=τ(α1+ρ)(α1+α2+q+γ)[(α1+H∗iΦ)−α1(1+H∗iθ)]. | (3.26) |
Theorem 3. For system (2.1), we assume that μ1=μ2=μ3=μ4.
(Ⅰ) When θ=0,α2=0 and R0>1(i.e.,L4), the alcoholism equilibrium P∗0 is locally asymptotically stable;
(Ⅱ)When θ≠0, R0>max{1,R01}(i.e.,ΩA, and ΩB), Φ>α1θ and τ>ρ, the alcoholism equilibrium P∗1 is locally asymptotically stable;
(Ⅲ)When R02=R0<min{1,R01}(i.e.,L2), the alcoholism equilibrium P∗2 may be locally stable or not;
(Ⅳ)(ⅰ)When R02<R0<min{1,R01}(i.e.,ΩE), the alcoholism equilibrium P∗3 is unstable,
(ⅱ)When R02<R0<min{1,R01}(i.e.,ΩE) and τ>ρ, the alcoholism equilibrium P∗4 is locally asymptotically stable.
Proof. (Ⅰ)When θ=0, applying to the proof of (Ⅰ) of Theorem 2. We linearize the system (2.1) and evaluate the characteristic equation at the alcoholism equilibrium P∗0, and get
|λ+βH∗0e−αT∗0+α10βS∗0e−αT∗0−q0−αβS∗0H∗0e−αT∗0−βH∗0e−αT∗0λ+(α1+ρ)−βS∗0e−αT∗00αβS∗0H∗0e−αT∗00−ρλ+(α1+q+γ)0000−γλ+α10−μ1−μ1−μ1−μ1λ+τ|=0. |
Thus, the characteristic equation can be rewritten as:
(λ+α1)(λ+τ)G1(λ)=0, |
G1(λ)=λ3+b1λ2+b2λ+b3=0, |
where
b1=3α1+q+γ+ρ+H∗0Φ,b2=(2α1+q+γ+ρ)(α1+H∗0Φ),b3=[(α1+ρ)(α1+γ)+α1q]H∗0Φ. |
It is clear that b1>0, b2>0 and b3>0. Applying Routh−Hurwitz [13], by assuming that B=b1b2−b3. Then, we obtain
B=(2α1+q+γ+ρ)(H∗0Φ)2+(7α12+5α1q+5α1γ+5α1ρ+q2+2qγ+2qρ+γ2+γρ+ρ2)(H∗0Φ)+6α13+5α12q+5α12γ+5α12ρ+α1q2+2α1qγ+2α1qρ+α1γ2+2α1γρ+α1ρ2>0 |
Hence, the alcoholism equilibrium P∗0 is locally asymptotically stable.
(Ⅱ)When μ1=μ2=μ3=μ4 and Φ>α1θ, by Eqs.(3.23)-(3.26), we have
a1(H∗1)=3α1+α2+q+γ+ρ+τ+H∗1Φ>0,a2(H∗1)=(2α1+α2+q+γ+ρ+τ)(α1+H∗1Φ)+(2α1+α2+q+γ+ρ)τ>0,a3(H∗1)=(2α1+α2+q+γ+ρ)(α1+H∗1Φ)τ+(α1+α2+q+γ)α1H∗1Φ+(α1+α2+γ)ρH∗1Φ>0,a4(H∗1)=τ(α1+ρ)(α1+α2+q+γ)[(α1+H∗1Φ)−α1(1+H∗1θ)]>0. |
Applying Routh−Hurwitz [13], let C=a1a2−a3. Then, we obtain
C=c1H∗12+c2H∗1+c3>0, |
where
c1=2Φ2α1+Φ2α2+Φ2γ+Φ2q+Φ2ρ+Φ2τ>0,c2=7Φα12+Φα22+Φγ2+Φq2+Φρ2+Φτ2+5Φα1α2+5Φα1γ+2Φα2γ+5Φα1q+2Φα2q+5Φα1ρ+Φα2ρ+6Φα1τ+2Φqρ+2Φqτ+2Φρτ+Φγρ+2Φγq+2Φα2τ+2Φγτ>0,c3=α1α22+5α12α2+α1γ2+5α12γ+α1q2+5α12q+α1ρ2+5α12ρ+9α12τ+α2τ2+α22τ+γτ2+γ2τ+qτ2+q2τ+ρτ2+ρ2τ+2α1α2q+2α1α2ρ+6α1α2τ+2α1γq+2α1γρ+6α1γτ+6α1qτ+2α2qτ+6α1ρτ+2α2ρτ+2γqτ+2γρτ+2qρτ+2α1qρ+3α1τ2+6α13+2α1α2γ+2α2γτ>0. |
Then, let D = a_{3}[a_{1}a_{2}-a_{3}]-a_{1}^{2}a_{4} , and get
D = d_{1}{H_{1}^{*}}^2+d_{2}H_{1}^{*}+d_{3}, |
It is clear that D > 0 and d_{i} > 0 ( i = 1, 2, 3 ), when \tau > \rho . Because the expression of d_{i} ( i = 1, 2, 3 ) are too long, we list them in Appendix. Hence, the alcoholism equilibrium P_{1}^{*} is locally asymptotically stable.
(Ⅲ)Applying to the proof of (Ⅲ) of Theorem 2, when H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) , we obtain \Phi = \alpha_{1}\theta . Thus, by Eq.(3.26), we have
a_{4}(H_{2}^{*}) = \tau(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)\big[(\alpha_{1}+H_{2}^{*}\Phi)-\alpha_{1}(1+H_{2}^{*}\theta)\big] = 0, |
and by Eq.(3.23), we have
a_{1}(H_{2}^{*}) = 3\alpha_{1}+\alpha_{2}+q+\gamma +\rho +\tau +H_{2}^{*}\Phi \gt 0. |
Thus, we know that Eq.(3.21) has negative and zero eigenvalues. Therefore, the alcoholism equilibrium P_{2}^{*} may be locally stable or not.
(Ⅳ)(ⅰ)Applying to the proof of (Ⅳ) of Theorem 2, when H^{*}_{3} < H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) , we obtain \Phi < \alpha_{1}\theta . Thus, by Eq.(3.26), we have
a_{4}(H_{3}^{*}) = \tau(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)\big[(\alpha_{1}+H_{3}^{*}\Phi)-\alpha_{1}(1+H_{3}^{*}\theta)\big] \lt 0, |
and by Eq.(3.23), we have
a_{1}(H_{3}^{*}) = 3\alpha_{1}+\alpha_{2}+q+\gamma +\rho +\tau +H_{3}^{*}\Phi \gt 0. |
Assuming g_{1}(H_{3}^{*}), g_{2}(H_{3}^{*}), g_{3}(H_{3}^{*}), g_{4}(H_{3}^{*}) is the root of Eq.(3.22), and we assume that the real parts satisfying Re(g_{1}(H_{3}^{*}))\leq Re(g_{2}(H_{3}^{*}))\leq Re(g_{3}(H_{3}^{*}))\leq Re(g_{4}(H_{3}^{*})) , so we obtain
g_{1}(H_{3}^{*})+g_{2}(H_{3}^{*})+g_{3}(H_{3}^{*})+g_{4}(H_{3}^{*}) = -a_{1}(H_{3}^{*}) \lt 0, |
and
g_{1}(H_{3}^{*})g_{2}(H_{3}^{*})g_{3}(H_{3}^{*})g_{4}(H_{3}^{*}) = a_{4}(H_{3}^{*}) \lt 0. |
There are Re(g_{1}(H_{3}^{*})) < 0 and Re(g_{4}(H_{3}^{*})) > 0 , thus, the alcoholism equilibrium P_{3}^{*} is unstable.
(ⅱ) When H^{*}_{4} > H^{*}_{2} = \frac{1}{\theta}\ln(\frac{R_{01}}{R_{0}}) , we obtain \Phi > \alpha_{1}\theta . Thus, by Eq.(3.26), we have
a_{4}(H_{4}^{*}) = \tau(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)\big[(\alpha_{1}+H_{4}^{*}\Phi)-\alpha_{1}(1+H_{4}^{*}\theta)\big] \gt 0. |
By \mu_{1} = \mu_{2} = \mu_{3} = \mu_{4} , we have
\begin{eqnarray*} {a_{1}(H_{4}^{*})}& = &3\alpha_{1}+\alpha_{2}+q+\gamma +\rho +\tau +H_{4}^{*}\Phi \gt 0, \\ {a_{2}(H_{4}^{*})}& = &(2\alpha_{1}+\alpha_{2}+q+\gamma+\rho+\tau)(\alpha_{1}+H_{4}^{*}\Phi)+(2\alpha_{1}+\alpha_{2}+q+\gamma+\rho)\tau \gt 0, \\ {a_{3}(H_{4}^{*})}& = &(2\alpha_{1}+\alpha_{2}+q+\gamma+\rho)(\alpha_{1}+H_{4}^{*}\Phi)\tau\nonumber\\&&+(\alpha_{1}+\alpha_{2}+q+\gamma)\alpha_{1}H_{4}^{*}\Phi+(\alpha_{1}+\alpha_{2}+\gamma)\rho H_{4}^{*}\Phi \gt 0. \end{eqnarray*} |
Applying Routh - Hurwitz [13], by assuming that E = a_{1}a_{2}-a_{3} . Then, we obtain
E = e_{1}{H_{4}^{*}}^2+e_{2}H_{4}^{*}+e_{3} \gt 0, |
where
\begin{eqnarray*} e_{1}& = & 2\, {\Phi} ^2\, {{\alpha}}_{1} + {\Phi} ^2\, {{\alpha}}_{2} + {\Phi} ^2\, {\gamma} + {\Phi} ^2\, q + {\Phi} ^2\, {{\rho}} + {\Phi} ^2\, {\tau} \gt 0, \\ e_{2}& = &7\, {\Phi} \, {{{\alpha}}_{1}}^2 + {\Phi} \, {{{\alpha}}_{2}}^2 + {\Phi} \, {{\gamma} }^2 + {\Phi} \, q^2 + {\Phi} \, {{{\rho}}}^2 + {\Phi} \, {{\tau} }^2 + 5\, {\Phi} \, {{\alpha}}_{1}\, {{\alpha}}_{2} + 5\, {\Phi} \, {{\alpha}}_{1}\, {\gamma} + 2\, {\Phi} \, {\gamma} \, q + {\Phi} \, {\gamma} \, {{\rho}}\\ &&+ 5\, {\Phi} \, {{\alpha}}_{1}\, q+ 2\, {\Phi} \, {{\alpha}}_{2}\, {\gamma} +5\, {\Phi} \, {{\alpha}}_{1}\, {{\rho}} + 2\, {\Phi} \, {{\alpha}}_{2}\, q + {\Phi} \, {{\alpha}}_{2}\, {{\rho}} + 6\, {\Phi} \, {{\alpha}}_{1}\, {\tau} + 2\, {\Phi} \, {{\alpha}}_{2}\, {\tau} + 2\, {\Phi} \, {\gamma} \, {\tau} \\ && + 2\, {\Phi} \, q\, {{\rho}} + 2\, {\Phi} \, q\, {\tau} + 2\, {\Phi} \, {{\rho}}\, {\tau} \gt 0, \\ e_{3}& = &5\, {{{\alpha}}_{1}}^2\, {{\alpha}}_{2} + {{\alpha}}_{1}\, {{{\alpha}}_{2}}^2 + {{\alpha}}_{1}\, {{\gamma} }^2 + 5\, {{{\alpha}}_{1}}^2\, {\gamma} + {{\alpha}}_{1}\, q^2 + 5\, {{{\alpha}}_{1}}^2\, q + {{\alpha}}_{1}\, {{{\rho}}}^2 + 5\, {{{\alpha}}_{1}}^2\, {{\rho}} + 3\, {{\alpha}}_{1}\, {{\tau} }^2 \\ &&+ 9\, {{{\alpha}}_{1}}^2\, {\tau} + {{\alpha}}_{2}\, {{\tau} }^2 + {{{\alpha}}_{2}}^2\, {\tau} + {\gamma} \, {{\tau} }^2 + {{\gamma} }^2\, {\tau} + q\, {{\tau} }^2 + q^2\, {\tau} + {{\rho}}\, {{\tau} }^2 + {{{\rho}}}^2\, {\tau} + 6\, {{{\alpha}}_{1}}^3 + 2\, {{\alpha}}_{1}\, {{\alpha}}_{2}\, {\gamma} \\ && + 2\, {{\alpha}}_{1}\, {{\alpha}}_{2}\, q + 2\, {{\alpha}}_{1}\, {{\alpha}}_{2}\, {{\rho}} + 6\, {{\alpha}}_{1}\, {{\alpha}}_{2}\, {\tau} + 2\, {{\alpha}}_{1}\, {\gamma} \, q + 2\, {{\alpha}}_{1}\, {\gamma} \, {{\rho}} + 6\, {{\alpha}}_{1}\, {\gamma} \, {\tau} + 2\, {{\alpha}}_{2}\, {\gamma} \, {\tau} + 2\, {{\alpha}}_{1}\, q\, {{\rho}} \\ &&+ 2\, {{\alpha}}_{2}\, q\, {\tau} + 6\, {{\alpha}}_{1}\, q\, {\tau} + 6\, {{\alpha}}_{1}\, {{\rho}}\, {\tau} + 2\, {{\alpha}}_{2}\, {{\rho}}\, {\tau} + 2\, {\gamma} \, {{\rho}}\, {\tau} +2\, {\gamma} \, q\, {\tau} + 2\, q\, {{\rho}}\, {\tau} \gt 0. \end{eqnarray*} |
Then, by assuming that F = a_{3}[a_{1}a_{2}-a_{3}]-a_{1}^{2}a_{4} , and get
F = f_{1}{H_{4}^{*}}^2+f_{2}H_{4}^{*}+f_{3}, |
It is clear that D > 0 , when f_{i} > 0 ( i = 1, 2, 3 ) and \tau > \rho . Because the expression of f_{i} ( i = 1, 2, 3 ) are too long, we do not list it here, and it is placed in Appendix. Hence, the alcoholism equilibrium P_{4}^{*} is locally asymptotically stable.
In this section, we study the change of the parameter \beta causing a forward or a backward bifurcation to occur.
Theorem 4. (Ⅰ) If R_{01} > 1 , when R_{0} = 1 , the system (2.1) appears a backward bifurcation.
(Ⅱ) If R_{01} < 1 , when R_{0} = 1 , the system (2.1) appears a forward bifurcation.
Proof. Using the central manifold theory described in [29]. Introducing x_{1} = S , x_{2} = L , x_{3} = H , x_{4} = R , x_{5} = T , the system (2.1) becomes
\begin{equation} \left\{ \begin{split} &\frac{dx_{1}}{dt} = \Lambda +qx_{3}-\beta x_{1}x_{3}e^{-\alpha x_{5}}-\alpha_{1}x_{1}: = f_{1}, \\ &\frac{dx_{2}}{dt} = \beta x_{1}x_{3}e^{-\alpha x_{5}}-\rho x_{2}-\alpha_{1}x_{2}: = f_{2}, \\ &\frac{dx_{3}}{dt} = \rho x_{2}-\gamma x_{3}-qx_{3}-(\alpha_{1}+\alpha_{2})x_{3}: = f_{3}, \\ &\frac{dx_{4}}{dt} = \gamma x_{3}-\alpha_{1}x_{4}: = f_{4}, \\ &\frac{dx_{5}}{dt} = \mu_{1}x_{1}+\mu_{2}x_{2}+\mu_{3}x_{3}+\mu_{4}x_{4}-\tau x_{5}: = f_{5}. \end{split} \right. \end{equation} | (3.27) |
Thus, the alcohol free equilibrium P_{0} is
P_{0} = X_{0} = (\frac{\Lambda}{\alpha_{1}}, 0, 0, 0, \frac{\Lambda \mu_{1}}{\alpha_{1}\tau}), |
In view of Theorem 4.1 [29], the Jacobian matrix J(P_{0}) of the system (3.27) in the alcohol free equilibrium is
\begin{equation*} J(X_{0}) = \left( \begin{array}{ccccc} -\alpha_{1}&0&q-\frac{\Lambda \beta}{\alpha_{1}}e^{\frac{-\alpha \mu_{1}\Lambda}{\alpha_{1}\tau}}&0&0\\ 0&-(\alpha_{1}+\rho)&\frac{\Lambda \beta}{\alpha_{1}}e^{\frac{-\alpha \mu_{1}\Lambda}{\alpha_{1}\tau}}&0&0\\ 0&\rho&-(\alpha_{1}+\alpha_{2}+q+\gamma)&0&0\\ 0&0&\gamma&-\alpha_{1}&0\\ \mu_{1}&\mu_{2}&\mu_{3}&\mu_{4}&-\tau\\ \end{array} \right). \end{equation*} |
We establish the local stability of alcohol free equilibrium taking \beta as bifurcation parameter, when R_{0} = 1 corresponding to \beta = \beta^{*} = \frac{\alpha_{1}(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)e^{\frac{\Lambda \alpha \mu_{1}}{\alpha_{1}\tau}}}{\Lambda \rho} , thus, we obtain
\begin{equation*} J(X_{0}) = \left( \begin{array}{ccccc} -\alpha_{1}&0&q-\frac{\alpha_{1}(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)}{\rho}&0&0\\ 0&-(\alpha_{1}+\rho)&\frac{\alpha_{1}(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)}{\rho}&0&0\\ 0&\rho&-(\alpha_{1}+\alpha_{2}+q+\gamma)&0&0\\ 0&0&\gamma&-\alpha_{1}&0\\ \mu_{1}&\mu_{2}&\mu_{3}&\mu_{4}&-\tau\\ \end{array} \right). \end{equation*} |
It is clear that 0 is a simple eigenvalue of J(P_{0}) . Therefore, there is a right eigenvector associated with 0 eigenvalues that is R = (r_{1}, r_{2}, r_{3}, r_{4}, r_{5})^{T} , there is a left eigenvector associated with 0 eigenvalues is L = (l_{1}, l_{2}, l_{3}, l_{4}, l_{5}) , and it is required to satisfy LR = 1 .
Therefore, the right eigenvector is
\begin{equation*} R = \left( \begin{array}{c} \frac{-\alpha_{1}(\alpha_{1}+\alpha_{2}+q+\gamma)-\rho(\alpha_{1}+\alpha_{2}+\gamma)}{\alpha_{1}\rho}\\ \frac{\alpha_{1}+\alpha_{2}+q+\gamma}{\rho}\\ 1\\ \frac{\gamma}{\alpha_{1}}\\ \frac{-(\mu_{1}-\mu_{2})(\alpha_{1}+\alpha_{2}+q+\gamma)}{\rho\tau}-\frac{(\alpha_{1}\mu_{1}-\alpha_{1}\mu_{3}+\alpha_{2}\mu_{1}+\gamma \mu_{1}-\gamma \mu_{4})}{\alpha_{1}\tau}\\ \end{array} \right), \end{equation*} |
the left eigenvector is
\begin{equation*} L = \Big(0, \frac{\rho}{2\alpha_{1}+\alpha_{2}+q+\gamma +\rho}, \frac{\alpha_{1}+\rho}{2\alpha_{1}+\alpha_{2}+q+\gamma +\rho}, 0, 0\Big). \end{equation*} |
In view of Theorem 4.1 [29], we know that
\begin{equation*} \begin{split} a = &\underset{k, i, j = 1}{\overset{5}{\sum}} l_{k}r_{i}r_{j}\frac{\partial^{2}f_{k}(X_{0})}{\partial x_{i}\partial x_{j}}, \\ b = &\underset{k, i = 1}{\overset{5}{\sum}} l_{k}r_{i}\frac{\partial^{2}f_{k}(X_{0})}{\partial x_{i}\partial \beta}. \end{split} \end{equation*} |
Therefore, we obtain
\begin{equation*} \begin{split} a = &l_{2}r_{1}r_{3}\frac{\partial^{2}f_{2}(X_{0})}{\partial x_{1}\partial x_{3}}+ l_{2}r_{3}r_{1}\frac{\partial^{2}f_{2}(X_{0})}{\partial x_{3}\partial x_{1}}+ l_{2}r_{3}r_{5}\frac{\partial^{2}f_{2}(X_{0})}{\partial x_{3}\partial x_{5}}+ l_{2}r_{5}r_{3}\frac{\partial^{2}f_{2}(X_{0})}{\partial x_{5}\partial x_{3}}\\ = &2l_{2}\Big(r_{1}r_{3}\frac{\partial^{2}f_{2}(X_{0})}{\partial x_{1}\partial x_{3}}+r_{3}r_{5}\frac{\partial^{2}f_{2}(X_{0})}{\partial x_{3}\partial x_{5}}\Big)\\ = &\frac{-2\rho\Lambda\alpha\beta e^{-\frac{\Lambda \alpha \mu_{1}}{\alpha_{1}\tau}}}{\alpha_{1}(2\alpha_{1}+\alpha_{2}+q+\gamma+\rho)}\Big[\frac{\alpha_{1}(\mu_{2}-\mu_{1})(\alpha_{1}+\alpha_{2}+q+\gamma)-\rho(\alpha_{1}\mu_{1}-\alpha_{1}\mu_{3}+\alpha_{2}\mu_{1}+\gamma \mu_{1}-\gamma u_{4})}{\alpha_{1}\rho \tau}\Big]\\ &+\frac{2\rho\beta e^{-\frac{\Lambda \alpha \mu_{1}}{\alpha_{1}\tau}}}{2\alpha_{1}+\alpha_{2}+q+\gamma+\rho}\Big[\frac{-(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+\gamma)-\alpha_{1}q}{\alpha_{1}\rho}\Big]\\ = &2\Big[\frac{\alpha_{1}(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+q+\gamma)^{2}+\rho(\alpha_{1}+\rho)(\alpha_{1}+\alpha_{2}+\gamma)(\alpha_{1}+\alpha_{2}+q+\gamma)}{\Lambda\rho(2\alpha_{1}+\alpha_{2}+q+\gamma+\rho)}\Big](R_{01}-1).\\ b = &l_{2}r_{3}\frac{\partial^{2}f_{2}(X_{0})}{\partial x_{3}\partial \beta} = \frac{\Lambda \rho e^{-\frac{\Lambda \alpha \mu_{1}}{\alpha_{1}\tau}}}{\alpha_{1}(2\alpha_{1}+\alpha_{2}+q+\gamma +\rho)} \gt 0. \end{split} \end{equation*} |
According to Theorem 4.1 of [29], we notice that the coefficient b is always positive. The coefficient a is positive when {R_{01}} > 1 . In this case, the direction of the bifurcation of the system (2.1) at {R_{0}} = 1 is backward, as shown in the Figure 9(a). The coefficient a is negative when {R_{01}} < 1 . Under this circumstance, the direction of the bifurcation of the system (2.1) at {R_{0}} = 1 is forward, as shown in the Figure 9(b).
The goal of this section is to present some numerical simulations which complement the theoretical results in the previous sections. We choose some parameters based on the Table 1.
Parameter | Description | Value | Source |
\Lambda | The constant recruitment rate of the population | 0.7-0.8 day^{-1} | [30] |
\beta | Transmission coefficient from the moderate drinkers | ||
compartment to the light problem drinkers compartment | 0.0099 - 0.9 person^{-1} | Estimate | |
\alpha | The coefficient that determines how effective the positive | ||
drinking information can reduce the transmission rate | 0.00091 - 0.8 tweet^{-1} | Estimate | |
\rho | Transmission coefficient from the light problem drinkers | ||
compartment to the heavy problem drinkers compartment | 0.04 - 0.99 day^{-1} | Estimate | |
{\mu_1} | The rates that the moderate drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [11] | |
{\mu_2} | The rates that the light problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [11] | |
{\mu_3} | The rates that the heavy problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [11] | |
{\mu_4} | The rates that quitting drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [13] | |
{\alpha_1} | The natural death rate of the population | 0.009 - 0.6year^{-1} | [4,5] |
{\alpha_2} | The death rate due to heavy alcoholism | 0.02 - 0.5day^{-1} | Estimate |
q | Transmission coefficient from the heavy problem drinkers | ||
compartment to the moderate drinkers compartment | 0.006 - 0.99day^{-1} | Estimate | |
\gamma | Transmission coefficient from the heavy problem drinkers | ||
compartment to quitting drinkers compartment | 0.006 - 0.99day^{-1} | Estimate | |
{\tau} | The rate that message become outdated | 0.03 - 0.6year^{-1} | [11] |
As an example, we choose a set of the following parameters, the parameter values are \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.07, \rho = 0.09, \tau = 0.03 and \beta = 0.001 . It follows from Theorem 1 that the alcohol free equilibrium P_{0} = (88.89, 0, 0, 0, 118.52) of system (2.1) is globally asymptotically stable for any value of time t when R_{0} = 0.0519 < 1 (see Figure 3 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium P^{*}(t) changes as t increasing and eventually tends to P_{0} = (88.89, 0, 0, 0, 118.52) from Figure 3 (a) and (b).
In order to verify the local stability of the alcoholism equilibrium P_{1}^{*} , we choose a set of the following parameters, the parameter values are \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0.04, \mu_2 = 0.04, \mu_3 = 0.04, \mu_4 = 0.04, \gamma = 0.1, q = 0.07, \rho = 0.09, \tau = 0.03 and \beta = 0.004 . It follows from Theorem 3 that the alcoholism equilibrium P_{1}^{*} = (28.16, 6.09, 0.81, 8.97, 58.71) of system (2.1) is locally asymptotically stable for any value of time t when R_{0} = 2.0765 > \max\{1, R_{01}\} , where R_{01} = 0.6128 (see Figure 4 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium P^{*}(t) changes with t increasing and eventually tends to P_{1}^{*} = (28.16, 6.09, 0.81, 8.97, 58.71) from Figure 4 (a) and (b).
In order to verify the local stability of the alcoholism equilibrium P_{4}^{*} , we choose a set of the following parameters, the parameter values are \Lambda = 8, \alpha = 0.07, \alpha_1 = 0.003, \alpha_2 = 0.005, \mu_1 = 0.025, \mu_2 = 0.025, \mu_3 = 0.025, \mu_4 = 0.025, \gamma = 0.01, q = 0.07, \rho = 0.4, \tau = 0.45 and \beta = 0.9 . It follows from Theorem 3 that the alcoholism equilibrium P_{4}^{*} = (254.1677, 85.2877, 387.8429, 1292.7081, 112.2223) of system (2.1) is locally asymptotically stable for any value of time t when R_{02} < R_{0} < \max\{1, R_{01}\} , where R_{01} = 2.7788 , R_{0} = 0.8486 and R_{02} = 0.4692 (see Figure 5 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium P^{*}(t) changes with t increasing and eventually tends to P_{4}^{*} = (254.1677, 85.2877, 387.8429, 1292.7081, 112.2223) from Figure 5 (a) and (b).
Then, we choose a set of the following parameters, the parameter values are \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0, \mu_2 = 0.008, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.99, \rho = 0.99, \tau = 0.03 and \beta = 0.0204 . It follows from Theorem 3 that the alcoholism equilibrium P_{1}^{*} = (49.19, 0.92, 0.57, 6.37, 185.30) of system (2.1) is locally asymptotically stable for any value of time t when R_{0} = 1.1238 > \max\{1, R_{01}\} and \beta < \beta^{*} , where R_{01} = -2.9044 and \beta^{*} = 0.021 (see Figure 6 (a) and (b)).
If we choose \beta as 0.076 (see Figure 7 (a) and (b)), we have more intricate dynamic behaviors on system (2.1). As an example, we choose a set of the following parameters, the parameter values are \Lambda = 0.8, \alpha = 0.00626, \alpha_1 = 0.009, \alpha_2 = 0.4, \mu_1 = 0.009, \mu_2 = 0.004, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.06, \rho = 0.9, \tau = 0.03 and \beta = 0.076 . The alcoholism equilibrium P_{1}^{*} of system (2.1) occurs a Hopf bifurcation when R_{0} = 9.9478 > 1 and \beta > \beta^{*} , where \beta^{*} = 0.011 (see Figure 7 (a-d)). In Figure 7 (a-d), we can readily see that the solution curves of system (2.1) perform a sustained periodic oscillation and phase trajectories approaches limit cycle.
In order to demonstrate some results about Hopf bifurcation, we consider \beta as bifurcation parameter. We know that the alcoholism equilibrium P_{1}^{*} is feasible for \beta\in[0.0099, 0.8] . Thus, system (2.1) is stable when 0.0099\leq \beta < 0.011 , and Hopf bifurcation occurs at the alcoholism equilibrium P_{1}^{*} when 0.011\leq \beta < 0.08 , and system (2.1) becomes stable again when 0.08\leq \beta \leq 0.2 , as depicted in Figure 8(a-e).
The backward and forward bifurcation diagram of system (2.1) is shown in Figure 9, and the direction of bifurcation depends upon the value of R_{01} . As seen in the backward bifurcation diagram of Figure 9(a) when R_{01} = 4.4936 > 1 , there is a threshold quantity R_{t} which is the value of R_{0} . The alcohol free equilibrium is globally asymptotically stable when R_{0} < R_{t} , where R_{t} = 0.1350 . There are two alcoholism equilibria and a alcohol free equilibrium when R_{t} < R_{0} < 1 , the upper ones are stable, the middle ones are unstable and the lower ones is globally asymptotically stable. There are a stable alcoholism equilibria and an unstable alcohol free equilibrium when R_{0} > 1 . As seen in the forward bifurcation diagram of Figure 9(b) when R_{01} = 0.5357 < 1 , the alcohol free equilibrium is globally asymptotically stable when R_{0} < 1 . There are a stable alcoholism equilibria and an unstable alcohol free equilibrium when R_{0} > 1 .
In this section, we examine the effects of changes in some parameters on the number of heavy problem drinkers. Therefore, we carry out the sensitivity analysis of heavy problem drinkers H.
Figure 10 shows a comparison between the parameters of system (2.1) versus the heavy problem drinkers, we main consider the effect of \mu_{1}, q, \gamma, \tau on the dynamics of heavy problem drinkers. Firstly, we choose the effect of parameter \mu_{1} on the dynamics of heavy problem drinkers, the other parameter values are \Lambda = 0.8, \alpha = 0.07, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.09, \rho = 0.09, \tau = 0.03 and \beta = 0.04 , as depicted in Figure 10(a). We know that the number of heavy problem drinkers will decrease when \mu_{1} increase from Figure 10(a). The simulation shows that more Twitter messages can result in the lower alcoholism cases, and changing the number of Twitter messages posted per day does affect the time when the alcoholism reaches the peak. Secondly, we choose the effect of parameter q on the dynamics of heavy problem drinkers, the other parameter values are \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_1 = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, \rho = 0.09, \tau = 0.03 and \beta = 0.15 , as depicted in Figure 10(b). We know that the number of heavy problem drinkers will decrease when q increase from Figure 10(b). Thirdly, we choose the effect of parameter \gamma on the dynamics of heavy problem drinkers, the other parameter values are \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_{1} = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, q = 0.07, \tau = 0.03, \rho = 0.01 and \beta = 0.15 , as depicted in Figure 10(c). We know that the number of heavy problem drinkers will decrease when \gamma increase from Figure 10(c). The simulation results in Figure 10(b) and 10(c) show that treatment significantly reduces the number of alcoholism cases. Finally, we choose the effect of parameter \tau on the dynamics of heavy problem drinkers, the other parameter values are \Lambda = 0.8, \alpha = 0.007, \alpha_1 = 0.009, \alpha_2 = 0.5, \mu_{1} = 0.04, \mu_2 = 0.8, \mu_3 = 0.8, \mu_4 = 0.8, \gamma = 0.1, q = 0.07, \rho = 0.09 and \beta = 0.15 , as depicted in Figure 10(d). We know that the number of heavy problem drinkers will increase when \tau increase from Figure 10(d). This indicates that the rate of upper outdated Twitter messages result in the upper alcoholism cases.
We construct a new alcoholism model with treatment and effect of Twitter in this paper. We study the stability of all equilibria and derive the basic reproductive number R_{0} . We also investigate the occurrence of backward and forward bifurcation for a certain defined range of R_{0} by the center manifold theory. Furthermore, we give some numerical results and sensitivity analysis to extend and illustrate our results. Our results show that Twitter may be a good indicator of alcoholism model and affect the emergence and spread of drinking behavior. How to prove existence of Hopf bifurcation analytically is interesting and still open. We will leave this work in future.
We are grateful to the anonymous referees and the editors for their valuable comments and suggestions which improved the quality of the paper. This work is supported by the National Natural Science Foundation of China (11861044 and 11661050), and the HongLiu first-class disciplines Development Program of Lanzhou University of Technology.
The authors declare there is no conflict of interest.
The formula of d_{1}, d_{2}, d_{3} in the proof of (Ⅱ) of Theorem 3.
\begin{eqnarray*} d_{1}& = &7\, {\Phi }^2\, {\alpha_{1}}^4 + 12\, {\Phi }^2\, {\alpha_{1}}^3\, \alpha_{2} + 12\, {\Phi }^2\, {\alpha_{1}}^3\, {\gamma} + 12\, {\Phi }^2\, {\alpha_{1}}^3\, q + 12\, {\Phi }^2\, {\alpha_{1}}^3\, \rho + 18\, {\Phi }^2\, {\alpha_{1}}^3\, \tau + 6\, {\Phi }^2\, {\alpha_{1}}^2\, {\alpha_{2}}^2 \\ &&+ 12\, {\Phi }^2\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma} + 12\, {\Phi }^2\, {\alpha_{1}}^2\, \alpha_{2}\, q + 18\, {\Phi }^2\, {\alpha_{1}}^2\, \alpha_{2}\, \rho + 21\, {\Phi }^2\, {\alpha_{1}}^2\, \alpha_{2}\, \tau + 6\, {\Phi }^2\, {\alpha_{1}}^2\, {{\gamma}}^2 + 12\, {\Phi }^2\, {\alpha_{1}}^2\, {\gamma}\, q \\ &&+ 18\, {\Phi }^2\, {\alpha_{1}}^2\, {\gamma}\, \rho+ 21\, {\Phi }^2\, {\alpha_{1}}^2\, {\gamma}\, \tau + 6\, {\Phi }^2\, {\alpha_{1}}^2\, q^2 + 12\, {\Phi }^2\, {\alpha_{1}}^2\, q\, \rho + 21\, {\Phi }^2\, {\alpha_{1}}^2\, q\, \tau + 6\, {\Phi }^2\, {\alpha_{1}}^2\, {\rho}^2 \\ &&+ 21\, {\Phi }^2\, {\alpha_{1}}^2\, \rho\, \tau + 13\, {\Phi }^2\, {\alpha_{1}}^2\, {\tau}^2 + {\Phi }^2\, \alpha_{1}\, {\alpha_{2}}^3 + 3\, {\Phi }^2\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma} + 3\, {\Phi }^2\, \alpha_{1}\, {\alpha_{2}}^2\, q + 7\, {\Phi }^2\, \alpha_{1}\, {\alpha_{2}}^2\, \rho \\ &&+ 8\, {\Phi }^2\, \alpha_{1}\, {\alpha_{2}}^2\, \tau + 3\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2 + 6\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q + 14\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \rho + 16\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \tau + 3\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, q^2 \\ &&+ 10\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, q\, \rho + 16\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, q\, \tau + 7\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, {\rho}^2 + 14\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, \rho\, \tau + 10\, {\Phi }^2\, \alpha_{1}\, \alpha_{2}\, {\tau}^2+ {\Phi }^2\, \alpha_{1}\, {{\gamma}}^3 \\ &&+ 3\, {\Phi }^2\, \alpha_{1}\, {{\gamma}}^2\, q + 7\, {\Phi }^2\, \alpha_{1}\, {{\gamma}}^2\, \rho + 8\, {\Phi }^2\, \alpha_{1}\, {{\gamma}}^2\, \tau + 3\, {\Phi }^2\, \alpha_{1}\, {\gamma}\, q^2 + 10\, {\Phi }^2\, \alpha_{1}\, {\gamma}\, q\, \rho + 16\, {\Phi }^2\, \alpha_{1}\, {\gamma}\, q\, \tau \\ &&+ 14\, {\Phi }^2\, \alpha_{1}\, {\gamma}\, \rho\, \tau + 10\, {\Phi }^2\, \alpha_{1}\, {\gamma}\, {\tau}^2 + {\Phi }^2\, \alpha_{1}\, q^3 + 3\, {\Phi }^2\, \alpha_{1}\, q^2\, \rho + 8\, {\Phi }^2\, \alpha_{1}\, q^2\, \tau + 3\, {\Phi }^2\, \alpha_{1}\, q\, {\rho}^2 \\ &&+ 10\, {\Phi }^2\, \alpha_{1}\, q\, {\tau}^2 + {\Phi }^2\, \alpha_{1}\, {\rho}^3 + 8\, {\Phi }^2\, \alpha_{1}\, {\rho}^2\, \tau + 10\, {\Phi }^2\, \alpha_{1}\, \rho\, {\tau}^2 + 2\, {\Phi }^2\, \alpha_{1}\, {\tau}^3 + {\Phi }^2\, {\alpha_{2}}^3\, \rho + {\Phi }^2\, {\alpha_{2}}^3\, \tau \\ &&+ 3\, {\Phi }^2\, {\alpha_{2}}^2\, {\gamma}\, \tau + 2\, {\Phi }^2\, {\alpha_{2}}^2\, q\, \rho + 3\, {\Phi }^2\, {\alpha_{2}}^2\, q\, \tau + {\Phi }^2\, {\alpha_{2}}^2\, {\rho}^2 + 2\, {\Phi }^2\, {\alpha_{2}}^2\, \rho\, \tau + 2\, {\Phi }^2\, {\alpha_{2}}^2\, {\tau}^2 + 3\, {\Phi }^2\, \alpha_{2}\, {{\gamma}}^2\, \rho \\ &&+ 3\, {\Phi }^2\, \alpha_{2}\, {{\gamma}}^2\, \tau + 4\, {\Phi }^2\, \alpha_{2}\, {\gamma}\, q\, \rho + 6\, {\Phi }^2\, \alpha_{2}\, {\gamma}\, q\, \tau + 2\, {\Phi }^2\, \alpha_{2}\, {\gamma}\, {\rho}^2 + 4\, {\Phi }^2\, \alpha_{2}\, {\gamma}\, \rho\, \tau + 4\, {\Phi }^2\, \alpha_{2}\, {\gamma}\, {\tau}^2 \\ &&+ 3\, {\Phi }^2\, \alpha_{2}\, q^2\, \tau + 2\, {\Phi }^2\, \alpha_{2}\, q\, {\rho}^2 + 3\, {\Phi }^2\, \alpha_{2}\, q\, \rho\, \tau + 4\, {\Phi }^2\, \alpha_{2}\, q\, {\tau}^2 + {\Phi }^2\, \alpha_{2}\, {\rho}^3 + 2\, {\Phi }^2\, \alpha_{2}\, {\rho}^2\, \tau + 3\, {\Phi }^2\, \alpha_{2}\, \rho\, {\tau}^2 \\ && +{\Phi }^2\, \alpha_{2}\, {\tau}^3 + {\Phi }^2\, {{\gamma}}^3\, \rho + {\Phi }^2\, {{\gamma}}^3\, \tau + 2\, {\Phi }^2\, {{\gamma}}^2\, q\, \rho + 3\, {\Phi }^2\, {{\gamma}}^2\, q\, \tau + {\Phi }^2\, {{\gamma}}^2\, {\rho}^2 + 2\, {\Phi }^2\, {{\gamma}}^2\, \rho\, \tau + 2\, {\Phi }^2\, {{\gamma}}^2\, {\tau}^2\\ && + {\Phi }^2\, {\gamma}\, q^2\, \rho + 3\, {\Phi }^2\, {\gamma}\, q^2\, \tau + 2\, {\Phi }^2\, {\gamma}\, q\, {\rho}^2 + 3\, {\Phi }^2\, {\gamma}\, q\, \rho\, \tau + 4\, {\Phi }^2\, {\gamma}\, q\, {\tau}^2 + {\Phi }^2\, {\gamma}\, {\rho}^3 + 2\, {\Phi }^2\, {\gamma}\, {\rho}^2\, \tau \\ &&+ 3\, {\Phi }^2\, {\gamma}\, \rho\, {\tau}^2 + {\Phi }^2\, {\gamma}\, {\tau}^3 + {\Phi }^2\, q^3\, \tau + {\Phi }^2\, q^2\, \rho\, \tau + 2\, {\Phi }^2\, q^2\, {\tau}^2 + {\Phi }^2\, q\, {\rho}^2\, \tau + 2\, {\Phi }^2\, q\, \rho\, {\tau}^2 + {\Phi }^2\, q\, {\tau}^3 \\ &&+ {\Phi }^2\, {\rho}^3\, \tau + 2\, {\Phi }^2\, {\rho}^2\, {\tau}^2 + {\Phi }^2\, \rho\, {\tau}^3 + 6\, \alpha\, \Phi \, {\alpha_{1}}^3\, \alpha_{2}\, \rho + 8\, \alpha\, \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \rho + 8\, \alpha\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \rho\\ && + 8\, \alpha\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, q\, \rho + 8\, \alpha\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^2 + 2\, \alpha\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, \rho\, \tau + 2\, \alpha\, \Phi \, \alpha_{1}\, {\alpha_{2}}^3\, \rho + 4\, \alpha\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, \rho \\ &&+ 4\, \alpha\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, q\, \rho + 10\, \alpha\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\rho}^2 + 2\, \alpha\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, \rho\, \tau + 2\, \alpha\, \Phi \, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, \rho + 4\, \alpha\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, \rho \\ &&+ 10\, \alpha\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\rho}^2 + 2\, \alpha\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \rho\, \tau + 2\, \alpha\, \Phi \, \alpha_{1}\, \alpha_{2}\, q^2\, \rho + 10\, \alpha\, \Phi \, \alpha_{1}\, \alpha_{2}\, q\, {\rho}^2 + 2\, \alpha\, \Phi \, \alpha_{1}\, \alpha_{2}\, q\, \rho\, \tau \\ &&+ 2\, \alpha\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\rho}^3 + 2\, \alpha\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\rho}^2\, \tau + 2\, \alpha\, \Phi \, {\alpha_{2}}^3\, {\rho}^2 + 4\, \alpha\, \Phi \, {\alpha_{2}}^2\, {\gamma}\, {\rho}^2 + 4\, \alpha\, \Phi \, {\alpha_{2}}^2\, q\, {\rho}^2 + 2\, \alpha\, \Phi \, {\alpha_{2}}^2\, {\rho}^3 \\ &&+ 2\, \alpha\, \Phi \, {\alpha_{2}}^2\, {\rho}^2\, \tau + 2\, \alpha\, \Phi \, \alpha_{2}\, {{\gamma}}^2\, {\rho}^2 + 4\, \alpha\, \Phi \, \alpha_{2}\, {\gamma}\, q\, {\rho}^2 + 2\, \alpha\, \Phi \, \alpha_{2}\, {\gamma}\, {\rho}^3 + 2\, \alpha\, \Phi \, \alpha_{2}\, {\gamma}\, {\rho}^2\, \tau+ {\Phi }^2\, \alpha_{2}\, q^2\, \rho \\ &&+ 2\, \alpha\, \Phi \, \alpha_{2}\, q^2\, {\rho}^2 + 2\, \alpha\, \Phi \, \alpha_{2}\, q\, {\rho}^3+ 2\, \alpha\, \Phi \, \alpha_{2}\, q\, {\rho}^2\, \tau+ 3\, {\Phi }^2\, {\alpha_{2}}^2\, {\gamma}\, \rho+ 7\, {\Phi }^2\, \alpha_{1}\, {\gamma}\, {\rho}^2+ 10\, {\Phi }^2\, \alpha_{1}\, q\, \rho\, \tau, \end{eqnarray*} |
\begin{eqnarray*} d_{2}& = &6\, \Phi \, {\alpha_{1}}^5 + 9\, \alpha\, {\alpha_{1}}^4\, \alpha_{2}\, \rho + 11\, \Phi \, {\alpha_{1}}^4\, \alpha_{2} + 11\, \Phi \, {\alpha_{1}}^4\, {\gamma} + 11\, \Phi \, {\alpha_{1}}^4\, q + 11\, \Phi \, {\alpha_{1}}^4\, \rho + 26\, \Phi \, {\alpha_{1}}^4\, \tau \\ &&+ 15\, \alpha\, {\alpha_{1}}^3\, {\alpha_{2}}^2\, \rho + 6\, \Phi \, {\alpha_{1}}^3\, {\alpha_{2}}^2 + 15\, \alpha\, {\alpha_{1}}^3\, \alpha_{2}\, {\gamma}\, \rho + 12\, \Phi \, {\alpha_{1}}^3\, \alpha_{2}\, {\gamma} + 15\, \alpha\, {\alpha_{1}}^3\, \alpha_{2}\, q\, \rho \\ &&+ 15\, \alpha\, {\alpha_{1}}^3\, \alpha_{2}\, {\rho}^2 + 6\, \alpha\, {\alpha_{1}}^3\, \alpha_{2}\, \rho\, \tau + 18\, \Phi \, {\alpha_{1}}^3\, \alpha_{2}\, \rho + 33\, \Phi \, {\alpha_{1}}^3\, \alpha_{2}\, \tau + 6\, \Phi \, {\alpha_{1}}^3\, {{\gamma}}^2 + 12\, \Phi \, {\alpha_{1}}^3\, {\gamma}\, q \\ &&+ 18\, \Phi \, {\alpha_{1}}^3\, {\gamma}\, \rho + 33\, \Phi \, {\alpha_{1}}^3\, {\gamma}\, \tau + 6\, \Phi \, {\alpha_{1}}^3\, q^2 + 12\, \Phi \, {\alpha_{1}}^3\, q\, \rho + 33\, \Phi \, {\alpha_{1}}^3\, q\, \tau + 6\, \Phi \, {\alpha_{1}}^3\, {\rho}^2 \\ &&+ 27\, \Phi \, {\alpha_{1}}^3\, {\tau}^2 + 7\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^3\, \rho + \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^3 + 14\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\gamma}\, \rho + 3\, \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\gamma} + 14\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, q\, \rho\\ && + 3\, \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^2\, q + 23\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\rho}^2 + 8\, \alpha\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \rho\, \tau + 8\, \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \rho + 14\, \Phi \, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \tau \\ &&+ 3\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {{\gamma}}^2 + 14\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, q\, \rho + 6\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, q + 23\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, {\rho}^2 + 8\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \rho\, \tau \\ &&+ 16\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \rho + 28\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \tau + 7\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, q^2\, \rho + 3\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, q^2+ 23\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, q\, {\rho}^2 \\ &&+ 8\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, q\, \rho\, \tau + 11\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, q\, \rho + 28\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, q\, \tau + 7\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^3 + 8\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^2\, \tau \\ &&+ 8\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^2 + \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, \rho\, {\tau}^2 + 26\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, \rho\, \tau + 27\, \Phi \, {\alpha_{1}}^2\, \alpha_{2}\, {\tau}^2 + \Phi \, {\alpha_{1}}^2\, {{\gamma}}^3 + 3\, \Phi \, {\alpha_{1}}^2\, {{\gamma}}^2\, q \\ &&+ 8\, \Phi \, {\alpha_{1}}^2\, {{\gamma}}^2\, \rho + 14\, \Phi \, {\alpha_{1}}^2\, {{\gamma}}^2\, \tau + 3\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, q^2 + 11\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, q\, \rho + 28\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, q\, \tau + 8\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, {\rho}^2 \\ &&+ 26\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, \rho\, \tau + 27\, \Phi \, {\alpha_{1}}^2\, {\gamma}\, {\tau}^2 + \Phi \, {\alpha_{1}}^2\, q^3 + 3\, \Phi \, {\alpha_{1}}^2\, q^2\, \rho + 14\, \Phi \, {\alpha_{1}}^2\, q^2\, \tau + 3\, \Phi \, {\alpha_{1}}^2\, q\, {\rho}^2 \\ &&+ 19\, \Phi \, {\alpha_{1}}^2\, q\, \rho\, \tau + 27\, \Phi \, {\alpha_{1}}^2\, q\, {\tau}^2 + \Phi \, {\alpha_{1}}^2\, {\rho}^3 + 14\, \Phi \, {\alpha_{1}}^2\, {\rho}^2\, \tau + 27\, \Phi \, {\alpha_{1}}^2\, \rho\, {\tau}^2+ 7\, \Phi \, {\alpha_{1}}^2\, {\tau}^3 \\ &&+ \alpha\, \alpha_{1}\, {\alpha_{2}}^4\, \rho + 3\, \alpha\, \alpha_{1}\, {\alpha_{2}}^3\, {\gamma}\, \rho + 3\, \alpha\, \alpha_{1}\, {\alpha_{2}}^3\, q\, \rho + 9\, \alpha\, \alpha_{1}\, {\alpha_{2}}^3\, {\rho}^2 + 2\, \alpha\, \alpha_{1}\, {\alpha_{2}}^3\, \rho\, \tau + \Phi \, \alpha_{1}\, {\alpha_{2}}^3\, \rho \\ &&+ 2\, \Phi \, \alpha_{1}\, {\alpha_{2}}^3\, \tau + 3\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {{\gamma}}^2\, \rho + 6\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, q\, \rho + 18\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, {\rho}^2 + 4\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, \rho\, \tau \\ &&+ 6\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, \tau + 3\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, q^2\, \rho + 18\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, q\, {\rho}^2 + 4\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, q\, \rho\, \tau + 2\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, q\, \rho \\ &&+ 9\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\rho}^3 + 10\, \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, {\rho}^2\, \tau + 2\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\rho}^2 + \alpha\, \alpha_{1}\, {\alpha_{2}}^2\, \rho\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, \rho\, \tau + 9\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\tau}^2 \\ &&+ \alpha\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^3\, \rho + 3\, \alpha\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, q\, \rho + 9\, \alpha\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, {\rho}^2 + 2\, \alpha\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, \rho\, \tau + 3\, \Phi \, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, \rho \\ &&+ 3\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q^2\, \rho + 18\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, {\rho}^2 + 4\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, \rho\, \tau + 4\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, \rho + 12\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, \tau \\ &&+ 9\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\rho}^3 + 10\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\rho}^2\, \tau + 4\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\rho}^2 + \alpha\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \rho\, {\tau}^2 + 10\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \rho\, \tau \\ &&+ 18\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\tau}^2 + \alpha\, \alpha_{1}\, \alpha_{2}\, q^3\, \rho + 9\, \alpha\, \alpha_{1}\, \alpha_{2}\, q^2\, {\rho}^2 + 2\, \alpha\, \alpha_{1}\, \alpha_{2}\, q^2\, \rho\, \tau + \Phi \, \alpha_{1}\, \alpha_{2}\, q^2\, \rho + 6\, \Phi \, \alpha_{1}\, \alpha_{2}\, q^2\, \tau \\ &&+ 9\, \alpha\, \alpha_{1}\, \alpha_{2}\, q\, {\rho}^3 + 10\, \alpha\, \alpha_{1}\, \alpha_{2}\, q\, {\rho}^2\, \tau + 2\, \Phi \, \alpha_{1}\, \alpha_{2}\, q\, {\rho}^2 + \alpha\, \alpha_{1}\, \alpha_{2}\, q\, \rho\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, \alpha_{2}\, q\, \rho\, \tau \\ &&+ \alpha\, \alpha_{1}\, \alpha_{2}\, {\rho}^4+ 2\, \alpha\, \alpha_{1}\, \alpha_{2}\, {\rho}^3\, \tau + \Phi \, \alpha_{1}\, \alpha_{2}\, {\rho}^3 + \alpha\, \alpha_{1}\, \alpha_{2}\, {\rho}^2\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\rho}^2\, \tau + 15\, \Phi \, \alpha_{1}\, \alpha_{2}\, \rho\, {\tau}^2 \\ &&+ 5\, \Phi \, \alpha_{1}\, \alpha_{2}\, {\tau}^3 + \Phi \, \alpha_{1}\, {{\gamma}}^3\, \rho + 2\, \Phi \, \alpha_{1}\, {{\gamma}}^3\, \tau + 2\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, q\, \rho + 6\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, q\, \tau + 2\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, {\rho}^2 \\ &&+ 9\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, {\tau}^2 + \Phi \, \alpha_{1}\, {\gamma}\, q^2\, \rho + 6\, \Phi \, \alpha_{1}\, {\gamma}\, q^2\, \tau + 2\, \Phi \, \alpha_{1}\, {\gamma}\, q\, {\rho}^2 + 5\, \Phi \, \alpha_{1}\, {\gamma}\, q\, \rho\, \tau + 18\, \Phi \, \alpha_{1}\, {\gamma}\, q\, {\tau}^2 \\ &&+ \Phi \, \alpha_{1}\, {\gamma}\, {\rho}^3 + 5\, \Phi \, \alpha_{1}\, {\gamma}\, {\rho}^2\, \tau + 15\, \Phi \, \alpha_{1}\, {\gamma}\, \rho\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, {\gamma}\, {\tau}^3 + 2\, \Phi \, \alpha_{1}\, q^3\, \tau + 9\, \Phi \, \alpha_{1}\, q^2\, {\tau}^2 \\ &&+ 5\, \Phi \, \alpha_{1}\, q\, {\tau}^3 + 2\, \Phi \, \alpha_{1}\, {\rho}^3\, \tau + 9\, \Phi \, \alpha_{1}\, {\rho}^2\, {\tau}^2 + 5\, \Phi \, \alpha_{1}\, \rho\, {\tau}^3 + \alpha\, {\alpha_{2}}^4\, {\rho}^2 + 3\, \alpha\, {\alpha_{2}}^3\, {\gamma}\, {\rho}^2 + 3\, \alpha\, {\alpha_{2}}^3\, q\, {\rho}^2 \\ &&+ 2\, \alpha\, {\alpha_{2}}^3\, {\rho}^3+ 2\, \alpha\, {\alpha_{2}}^3\, {\rho}^2\, \tau + \Phi \, {\alpha_{2}}^3\, {\tau}^2 + 3\, \alpha\, {\alpha_{2}}^2\, {{\gamma}}^2\, {\rho}^2 + 6\, \alpha\, {\alpha_{2}}^2\, {\gamma}\, q\, {\rho}^2 + 4\, \alpha\, {\alpha_{2}}^2\, {\gamma}\, {\rho}^3 \\ &&+ 3\, \Phi \, {\alpha_{2}}^2\, {\gamma}\, {\tau}^2 + 3\, \alpha\, {\alpha_{2}}^2\, q^2\, {\rho}^2 + 4\, \alpha\, {\alpha_{2}}^2\, q\, {\rho}^3 + 4\alpha\, {\alpha_{2}}^2\, q\, {\rho}^2\, \tau + \Phi \, {\alpha_{2}}^2\, q\, {\tau}(3\tau-\rho) + \alpha\, {\alpha_{2}}^2\, {\rho}^4 \\ &&+ 2\, \alpha\, {\alpha_{2}}^2\, {\rho}^3\, \tau + \alpha\, {\alpha_{2}}^2\, {\rho}^2\, {\tau}^2 + 2\, \Phi \, {\alpha_{2}}^2\, \rho\, {\tau}^2 + \Phi \, {\alpha_{2}}^2\, {\tau}^3 + \alpha\, \alpha_{2}\, {{\gamma}}^3\, {\rho}^2 + 3\, \alpha\, \alpha_{2}\, {{\gamma}}^2\, q\, {\rho}^2 + 2\, \alpha\, \alpha_{2}\, {{\gamma}}^2\, {\rho}^3 \\ &&+ 2\, \alpha\, \alpha_{2}\, {{\gamma}}^2\, {\rho}^2\, \tau + 3\, \Phi \, \alpha_{2}\, {{\gamma}}^2\, {\tau}^2 + 3\, \alpha\, \alpha_{2}\, {\gamma}\, q^2\, {\rho}^2 + 4\, \alpha\, \alpha_{2}\, {\gamma}\, q\, {\rho}^3 + 4\, \alpha\, \alpha_{2}\, {\gamma}\, q\, {\rho}^2\, \tau \\ && + \alpha\, \alpha_{2}\, {\gamma}\, {\rho}^4 + 2\, \alpha\, \alpha_{2}\, {\gamma}\, {\rho}^3\, \tau + \alpha\, \alpha_{2}\, {\gamma}\, {\rho}^2\, {\tau}^2 + 4\, \Phi \, \alpha_{2}\, {\gamma}\, \rho\, {\tau}^2 + 2\, \Phi \, \alpha_{2}\, {\gamma}\, {\tau}^3 + \alpha\, \alpha_{2}\, q^3\, {\rho}^2 \\ &&+ 2\, \alpha\, \alpha_{2}\, q^2\, {\rho}^3+ 2\, \alpha\, \alpha_{2}\, q^2\, {\rho}^2\, \tau+\Phi \, \alpha_{2}\, q^2\, {\tau}(3\tau-2\rho) + \alpha\, \alpha_{2}\, q\, {\rho}^4 + 2\, \alpha\, \alpha_{2}\, q\, {\rho}^3\, \tau + \alpha\, \alpha_{2}\, q\, {\rho}^2\, {\tau}^2 \\ &&+\Phi \, \alpha_{2}\, q\, \rho\, {\tau}(3\tau-2\rho) + 2\, \Phi \, \alpha_{2}\, q\, {\tau}^3 + 2\, \Phi \, \alpha_{2}\, {\rho}^2\, {\tau}^2 + \Phi \, \alpha_{2}\, \rho\, {\tau}^3 + \Phi \, {{\gamma}}^3\, {\tau}^2+ \Phi \, {\rho}^2\, {\tau}^3\\ &&+\Phi \, {{\gamma}}^2\, q\, {\tau}(3\tau-\rho) + 2\, \Phi \, {{\gamma}}^2\, \rho\, {\tau}^2 + \Phi \, {{\gamma}}^2\, {\tau}^3+\Phi \, {\gamma}\, q^2\, {\tau}(3\tau-2\rho)+ \Phi \, {\gamma}\, q\, \rho\, {\tau}(3\tau-2\rho) \\ &&+ 2\, \Phi \, {\gamma}\, q\, {\tau}^3 + 2\, \Phi \, {\gamma}\, {\rho}^2\, {\tau}^2 + \Phi \, {\gamma}\, \rho\, {\tau}^3+ \Phi \, q^3\, {\tau}(\tau-\rho) + \Phi \, q^2\, \rho\, {\tau}(\tau-\rho) + \Phi q^2{\tau}(\tau^2-\rho^2)\\ &&+\Phi \, q\, {\rho}^2{\tau}(\tau-\rho) + \Phi \, q\, \rho\, {\tau}^3 + \Phi \, {\rho}^3\, {\tau}^2+ 7\, \alpha\, {\alpha_{1}}^2\, \alpha_{2}\, {{\gamma}}^2\, \rho+ 3\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, \rho+ 6\, \Phi \, \alpha_{1}\, {\alpha_{2}}^2\, q\, \tau\\ &&+ 6\, \Phi \, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, \tau+ 18\, \Phi \, \alpha_{1}\, \alpha_{2}\, q\, {\tau}^2+ 5\, \Phi \, \alpha_{1}\, {{\gamma}}^2\, \rho\, \tau+ 12\, \Phi \, \alpha_{1}\, q\, \rho\, {\tau}^2+ 4\, \alpha\, {\alpha_{2}}^2\, {\gamma}\, {\rho}^2\, \tau\\ &&+ \Phi \, \alpha_{2}\, {\gamma}\, q\, {\tau}(6\tau-2\rho)+ 33\, \Phi \, {\alpha_{1}}^3\, \rho\, \tau+ 12\, \Phi \, {\alpha_{1}}^3\, \alpha_{2}\, q, \end{eqnarray*} |
\begin{eqnarray*} d_{3}& = &12\, {\alpha_{1}}^5\, \tau + 16\, {\alpha_{1}}^4\, \alpha_{2}\, \tau + 16\, {\alpha_{1}}^4\, {\gamma}\, \tau + 16\, {\alpha_{1}}^4\, q\, \tau + 16\, {\alpha_{1}}^4\, \rho\, \tau + 18\, {\alpha_{1}}^4\, {\tau}^2 + 7\, {\alpha_{1}}^3\, {\alpha_{2}}^2\, \tau \\ &&+ 14\, {\alpha_{1}}^3\, \alpha_{2}\, q\, \tau + 14\, {\alpha_{1}}^3\, \alpha_{2}\, \rho\, \tau + 21\, {\alpha_{1}}^3\, \alpha_{2}\, {\tau}^2 + 7\, {\alpha_{1}}^3\, {{\gamma}}^2\, \tau + 14\, {\alpha_{1}}^3\, {\gamma}\, q\, \tau + 14\, {\alpha_{1}}^3\, {\gamma}\, \rho\, \tau\\ &&+ 7\, {\alpha_{1}}^3\, q^2\, \tau + 14\, {\alpha_{1}}^3\, q\, \rho\, \tau + 21\, {\alpha_{1}}^3\, q\, {\tau}^2 + 7\, {\alpha_{1}}^3\, {\rho}^2\, \tau + 21\, {\alpha_{1}}^3\, \rho\, {\tau}^2 + 6\, {\alpha_{1}}^3\, {\tau}^3 + {\alpha_{1}}^2\, {\alpha_{2}}^3\, \tau \\ &&+ 3\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, q\, \tau + 3\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \rho\, \tau + 8\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\tau}^2 + 3\, {\alpha_{1}}^2\, \alpha_{2}\, {{\gamma}}^2\, \tau + 6\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, q\, \tau + 6\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \rho\, \tau \\ &&+ 16\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, {\tau}^2 + 3\, {\alpha_{1}}^2\, \alpha_{2}\, q^2\, \tau + 6\, {\alpha_{1}}^2\, \alpha_{2}\, q\, \rho\, \tau + 16\, {\alpha_{1}}^2\, \alpha_{2}\, q\, {\tau}^2 + 3\, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^2\, \tau + 16\, {\alpha_{1}}^2\, \alpha_{2}\, \rho\, {\tau}^2 \\ &&+ 5\, {\alpha_{1}}^2\, \alpha_{2}\, {\tau}^3 + {\alpha_{1}}^2\, {{\gamma}}^3\, \tau + 3\, {\alpha_{1}}^2\, {{\gamma}}^2\, q\, \tau + 3\, {\alpha_{1}}^2\, {{\gamma}}^2\, \rho\, \tau + 8\, {\alpha_{1}}^2\, {{\gamma}}^2\, {\tau}^2 + 3\, {\alpha_{1}}^2\, {\gamma}\, q^2\, \tau + 6\, {\alpha_{1}}^2\, {\gamma}\, q\, \rho\, \tau \\ &&+ 16\, {\alpha_{1}}^2\, {\gamma}\, q\, {\tau}^2 + 3\, {\alpha_{1}}^2\, {\gamma}\, {\rho}^2\, \tau + 16\, {\alpha_{1}}^2\, {\gamma}\, \rho\, {\tau}^2 + 5\, {\alpha_{1}}^2\, {\gamma}\, {\tau}^3 + {\alpha_{1}}^2\, q^3\, \tau + 3\, {\alpha_{1}}^2\, q^2\, \rho\, \tau + 8\, {\alpha_{1}}^2\, q^2\, {\tau}^2 \\ &&+ 3\, {\alpha_{1}}^2\, q\, {\rho}^2\, \tau + 16\, {\alpha_{1}}^2\, q\, \rho\, {\tau}^2 + 5\, {\alpha_{1}}^2\, q\, {\tau}^3 + {\alpha_{1}}^2\, {\rho}^3\, \tau + 8\, {\alpha_{1}}^2\, {\rho}^2\, {\tau}^2 + 5\, {\alpha_{1}}^2\, \rho\, {\tau}^3 + \alpha_{1}\, {\alpha_{2}}^3\, {\tau}^2 \\ &&+ 3\, \alpha_{1}\, {\alpha_{2}}^2\, q\, {\tau}^2 + 3\, \alpha_{1}\, {\alpha_{2}}^2\, \rho\, {\tau}^2 + \alpha_{1}\, {\alpha_{2}}^2\, {\tau}^3 + 3\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, {\tau}^2 + 6\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, {\tau}^2 + 6\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \rho\, {\tau}^2 \\ &&+ 3\, \alpha_{1}\, \alpha_{2}\, q^2\, {\tau}^2 + 6\, \alpha_{1}\, \alpha_{2}\, q\, \rho\, {\tau}^2+ 2\, \alpha_{1}\, \alpha_{2}\, q\, {\tau}^3 + 3\, \alpha_{1}\, \alpha_{2}\, {\rho}^2\, {\tau}^2 + 2\, \alpha_{1}\, \alpha_{2}\, \rho\, {\tau}^3 + \alpha_{1}\, {{\gamma}}^3\, {\tau}^2 \\ && + 3\, \alpha_{1}\, {{\gamma}}^2\, \rho\, {\tau}^2+ \alpha_{1}\, {{\gamma}}^2\, {\tau}^3 + 3\, \alpha_{1}\, {\gamma}\, q^2\, {\tau}^2 + 6\, \alpha_{1}\, {\gamma}\, q\, \rho\, {\tau}^2 + 2\, \alpha_{1}\, {\gamma}\, q\, {\tau}^3 + 3\, \alpha_{1}\, {\gamma}\, {\rho}^2\, {\tau}^2 + 2\, \alpha_{1}\, {\gamma}\, \rho\, {\tau}^3 \\ &&+ \alpha_{1}\, q^3\, {\tau}^2 + 3\, \alpha_{1}\, q^2\, \rho\, {\tau}^2 + \alpha_{1}\, q^2\, {\tau}^3 + 3\, \alpha_{1}\, q\, {\rho}^2\, {\tau}^2 + 2\, \alpha_{1}\, q\, \rho\, {\tau}^3 + \alpha_{1}\, {\rho}^3\, {\tau}^2 + \alpha_{1}\, {\rho}^2\, {\tau}^3\\ &&+14\, {\alpha_{1}}^3\, \alpha_{2}\, {\gamma}\, \tau+ 21\, {\alpha_{1}}^3\, {\gamma}\, {\tau}^2+ 3\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\gamma}\, \tau+ 3\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, {\tau}^2+ 2\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\tau}^3+ 3\, \alpha_{1}\, {{\gamma}}^2\, q\, {\tau}^2 . \end{eqnarray*} |
The formula of f_{1}, f_{2}, f_{3}.
\begin{eqnarray*} f_{1}& = &7\, {{\Phi}}^2\, {{\alpha}_{1}}^4 + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\alpha}_{2} + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\gamma} + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, q + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\rho} + 18\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2 \\ &&+ 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma} + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q + 18\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho} + 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\gamma}}^2 + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\gamma}\, q \\ &&+ 18\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\gamma}\, {\rho}+ 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\gamma}\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, q^2 + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, q\, {\rho} + 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, q\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\rho}}^2 \\ &&+ 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\rho}\, {\tau} + 13\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^3 + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q + 7\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho} \\ &&+ 8\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2 + 6\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q + 14\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho} + 16\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, q^2 \\ &&+ 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho} + 16\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\tau} + 7\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2 + 14\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\rho}\, {\tau} + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {{\tau}}^2+ {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^3 \\ &&+ 3\, {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^2\, q + 7\, {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^2\, {\rho} + 8\, {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, q^2 + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, q\, {\rho} + 16\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, q\, {\tau} \\ &&+ 14\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, {\rho}\, {\tau} + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{1}\, q^3 + 3\, {{\Phi}}^2\, {\alpha}_{1}\, q^2\, {\rho} + 8\, {{\Phi}}^2\, {\alpha}_{1}\, q^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, q\, {{\rho}}^2 \\ &&+ 10\, {{\Phi}}^2\, {\alpha}_{1}\, q\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{1}\, {{\rho}}^3 + 8\, {{\Phi}}^2\, {\alpha}_{1}\, {{\rho}}^2\, {\tau} + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\rho}\, {{\tau}}^2 + 2\, {{\Phi}}^2\, {\alpha}_{1}\, {{\tau}}^3 + {{\Phi}}^2\, {{\alpha}_{2}}^3\, {\rho} + {{\Phi}}^2\, {{\alpha}_{2}}^3\, {\tau} \\ &&+ 3\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\tau} + 2\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, q\, {\rho} + 3\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, q\, {\tau} + {{\Phi}}^2\, {{\alpha}_{2}}^2\, {{\rho}}^2 + 2\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 2\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {{\tau}}^2 + 3\, {{\Phi}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho} \\ &&+ 3\, {{\Phi}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\tau} + 4\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} + 6\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\tau} + 2\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + 4\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} + 4\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^2 \\ &&+ 3\, {{\Phi}}^2\, {\alpha}_{2}\, q^2\, {\tau} + 2\, {{\Phi}}^2\, {\alpha}_{2}\, q\, {{\rho}}^2 + 3\, {{\Phi}}^2\, {\alpha}_{2}\, q\, {\rho}\, {\tau} + 4\, {{\Phi}}^2\, {\alpha}_{2}\, q\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{2}\, {{\rho}}^3 + 2\, {{\Phi}}^2\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 \\ && +{{\Phi}}^2\, {\alpha}_{2}\, {{\tau}}^3 + {{\Phi}}^2\, {{\gamma}}^3\, {\rho} + {{\Phi}}^2\, {{\gamma}}^3\, {\tau} + 2\, {{\Phi}}^2\, {{\gamma}}^2\, q\, {\rho} + 3\, {{\Phi}}^2\, {{\gamma}}^2\, q\, {\tau} + {{\Phi}}^2\, {{\gamma}}^2\, {{\rho}}^2 + 2\, {{\Phi}}^2\, {{\gamma}}^2\, {\rho}\, {\tau} + 2\, {{\Phi}}^2\, {{\gamma}}^2\, {{\tau}}^2\\ && + {{\Phi}}^2\, {\gamma}\, q^2\, {\rho} + 3\, {{\Phi}}^2\, {\gamma}\, q^2\, {\tau} + 2\, {{\Phi}}^2\, {\gamma}\, q\, {{\rho}}^2 + 3\, {{\Phi}}^2\, {\gamma}\, q\, {\rho}\, {\tau} + 4\, {{\Phi}}^2\, {\gamma}\, q\, {{\tau}}^2 + {{\Phi}}^2\, {\gamma}\, {{\rho}}^3 + 2\, {{\Phi}}^2\, {\gamma}\, {{\rho}}^2\, {\tau} \\ &&+ 3\, {{\Phi}}^2\, {\gamma}\, {\rho}\, {{\tau}}^2 + {{\Phi}}^2\, {\gamma}\, {{\tau}}^3 + {{\Phi}}^2\, q^3\, {\tau} + {{\Phi}}^2\, q^2\, {\rho}\, {\tau} + 2\, {{\Phi}}^2\, q^2\, {{\tau}}^2 + {{\Phi}}^2\, q\, {{\rho}}^2\, {\tau} + 2\, {{\Phi}}^2\, q\, {\rho}\, {{\tau}}^2 + {{\Phi}}^2\, q\, {{\tau}}^3 \\ &&+ {{\Phi}}^2\, {{\rho}}^3\, {\tau} + 2\, {{\Phi}}^2\, {{\rho}}^2\, {{\tau}}^2 + {{\Phi}}^2\, {\rho}\, {{\tau}}^3 + 6\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho} + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho} + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\\ && + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho} + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\rho} + 4\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho} \\ &&+ 4\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\rho} + 10\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho} + 4\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} \\ &&+ 10\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\rho} + 10\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {\tau} \\ &&+ 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^3 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 2\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^3\, {{\rho}}^2 + 4\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^2 + 4\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, {{\rho}}^3 \\ &&+ 2\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, {{\rho}}^2\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^2 + 4\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^3 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2\, {\tau}+ {{\Phi}}^2\, {\alpha}_{2}\, q^2\, {\rho} \\ &&+ 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, q^2\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, q\, {{\rho}}^3+ 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, q\, {{\rho}}^2\, {\tau}+ 3\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho}+ 7\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^2+ 10\, {{\Phi}}^2\, {\alpha}_{1}\, q\, {\rho}\, {\tau}, \\ f_{2}& = &6\, {\Phi}\, {{\alpha}_{1}}^5 + 9\, {\alpha}\, {{\alpha}_{1}}^4\, {\alpha}_{2}\, {\rho} + 11\, {\Phi}\, {{\alpha}_{1}}^4\, {\alpha}_{2} + 11\, {\Phi}\, {{\alpha}_{1}}^4\, {\gamma} + 11\, {\Phi}\, {{\alpha}_{1}}^4\, q + 11\, {\Phi}\, {{\alpha}_{1}}^4\, {\rho} + 26\, {\Phi}\, {{\alpha}_{1}}^4\, {\tau} \\ &&+ 15\, {\alpha}\, {{\alpha}_{1}}^3\, {{\alpha}_{2}}^2\, {\rho} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, {{\alpha}_{2}}^2 + 15\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\gamma}\, {\rho} + 12\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\gamma} + 15\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, q\, {\rho} \\ &&+ 15\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {{\rho}}^2 + 6\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho}\, {\tau} + 18\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho} + 33\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\tau} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, {{\gamma}}^2 + 12\, {\Phi}\, {{\alpha}_{1}}^3\, {\gamma}\, q \\ &&+ 18\, {\Phi}\, {{\alpha}_{1}}^3\, {\gamma}\, {\rho} + 33\, {\Phi}\, {{\alpha}_{1}}^3\, {\gamma}\, {\tau} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, q^2 + 12\, {\Phi}\, {{\alpha}_{1}}^3\, q\, {\rho} + 33\, {\Phi}\, {{\alpha}_{1}}^3\, q\, {\tau} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, {{\rho}}^2 \\ &&+ 27\, {\Phi}\, {{\alpha}_{1}}^3\, {{\tau}}^2 + 7\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^3\, {\rho} + {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^3 + 14\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\gamma} + 14\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, q\, {\rho}\\ && + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, q + 23\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {{\rho}}^2 + 8\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 8\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho} + 14\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\tau} \\ &&+ 3\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\gamma}}^2 + 14\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} + 6\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, q + 23\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + 8\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 16\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho} + 28\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\tau} + 7\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q^2\, {\rho} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q^2+ 23\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {{\rho}}^2 \\ &&+ 8\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho}\, {\tau} + 11\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho} + 28\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\tau} + 7\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^3 + 8\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} \\ &&+ 8\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2 + {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 + 26\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^3 + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, q \\ &&+ 8\, {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {\rho} + 14\, {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {\tau} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, q^2 + 11\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {\rho} + 28\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {\tau} + 8\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, {{\rho}}^2 \\ &&+ 26\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, {\rho}\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{1}}^2\, q^3 + 3\, {\Phi}\, {{\alpha}_{1}}^2\, q^2\, {\rho} + 14\, {\Phi}\, {{\alpha}_{1}}^2\, q^2\, {\tau} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, q\, {{\rho}}^2 \\ &&+ 19\, {\Phi}\, {{\alpha}_{1}}^2\, q\, {\rho}\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, q\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{1}}^2\, {{\rho}}^3 + 14\, {\Phi}\, {{\alpha}_{1}}^2\, {{\rho}}^2\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, {\rho}\, {{\tau}}^2+ 7\, {\Phi}\, {{\alpha}_{1}}^2\, {{\tau}}^3 \\ &&+ {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^4\, {\rho} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\gamma}\, {\rho} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, q\, {\rho} + 9\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\rho}\, {\tau} + {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\rho} \\ &&+ 2\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\tau} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\gamma}}^2\, {\rho} + 6\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, q\, {\rho} + 18\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 6\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\tau} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q^2\, {\rho} + 18\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\rho}\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\rho} \\ &&+ 9\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^3 + 10\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^2\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^2 + {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 9\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\tau}}^2 \\ &&+ {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^3\, {\rho} + 3\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, q\, {\rho} + 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho}\, {\tau} + 3\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho} \\ &&+ 3\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q^2\, {\rho} + 18\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\rho}\, {\tau} + 4\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} + 12\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\tau} \\ &&+ 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^3 + 10\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2\, {\tau} + 4\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {{\tau}}^2 + 10\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 18\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^2 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q^3\, {\rho} + 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\rho}\, {\tau} + {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\rho} + 6\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\tau} \\ &&+ 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^3 + 10\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^2\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^2 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {\tau} \\ &&+ {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^4+ 2\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^3\, {\tau} + {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^3 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 15\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 \\ &&+ 5\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\tau}}^3 + {\Phi}\, {\alpha}_{1}\, {{\gamma}}^3\, {\rho} + 2\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^3\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, q\, {\rho} + 6\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, q\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, {{\rho}}^2 \\ &&+ 9\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, {{\tau}}^2 + {\Phi}\, {\alpha}_{1}\, {\gamma}\, q^2\, {\rho} + 6\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q^2\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q\, {{\rho}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q\, {\rho}\, {\tau} + 18\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q\, {{\tau}}^2 \\ &&+ {\Phi}\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^3 + 5\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^2\, {\tau} + 15\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, {\rho}\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, {{\tau}}^3 + 2\, {\Phi}\, {\alpha}_{1}\, q^3\, {\tau} + 9\, {\Phi}\, {\alpha}_{1}\, q^2\, {{\tau}}^2 \\ &&+ 5\, {\Phi}\, {\alpha}_{1}\, q\, {{\tau}}^3 + 2\, {\Phi}\, {\alpha}_{1}\, {{\rho}}^3\, {\tau} + 9\, {\Phi}\, {\alpha}_{1}\, {{\rho}}^2\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\rho}\, {{\tau}}^3 + {\alpha}\, {{\alpha}_{2}}^4\, {{\rho}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^3\, {\gamma}\, {{\rho}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^3\, q\, {{\rho}}^2 \\ &&+ 2\, {\alpha}\, {{\alpha}_{2}}^3\, {{\rho}}^3+ 2\, {\alpha}\, {{\alpha}_{2}}^3\, {{\rho}}^2\, {\tau} + {\Phi}\, {{\alpha}_{2}}^3\, {{\tau}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^2\, {{\gamma}}^2\, {{\rho}}^2 + 6\, {\alpha}\, {{\alpha}_{2}}^2\, {\gamma}\, q\, {{\rho}}^2 + 4\, {\alpha}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^3 \\ &&+ 3\, {\Phi}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\tau}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^2\, q^2\, {{\rho}}^2 + 4\, {\alpha}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^3 + 4{\alpha}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^2\, {\tau} + {\Phi}\, {{\alpha}_{2}}^2\, q\, {{\tau}}(3\tau-\rho) + {\alpha}\, {{\alpha}_{2}}^2\, {{\rho}}^4 \\ &&+ 2\, {\alpha}\, {{\alpha}_{2}}^2\, {{\rho}}^3\, {\tau} + {\alpha}\, {{\alpha}_{2}}^2\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\Phi}\, {{\alpha}_{2}}^2\, {\rho}\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{2}}^2\, {{\tau}}^3 + {\alpha}\, {\alpha}_{2}\, {{\gamma}}^3\, {{\rho}}^2 + 3\, {\alpha}\, {\alpha}_{2}\, {{\gamma}}^2\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^3 \\ &&+ 2\, {\alpha}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^2\, {\tau} + 3\, {\Phi}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\tau}}^2 + 3\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, q^2\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^3 + 4\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^2\, {\tau} \\ && + {\alpha}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^4 + 2\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^3\, {\tau} + {\alpha}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2\, {{\tau}}^2 + 4\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {{\tau}}^2 + 2\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^3 + {\alpha}\, {\alpha}_{2}\, q^3\, {{\rho}}^2 \\ &&+ 2\, {\alpha}\, {\alpha}_{2}\, q^2\, {{\rho}}^3+ 2\, {\alpha}\, {\alpha}_{2}\, q^2\, {{\rho}}^2\, {\tau}+{\Phi}\, {\alpha}_{2}\, q^2\, {{\tau}}(3\tau-2\rho) + {\alpha}\, {\alpha}_{2}\, q\, {{\rho}}^4 + 2\, {\alpha}\, {\alpha}_{2}\, q\, {{\rho}}^3\, {\tau} + {\alpha}\, {\alpha}_{2}\, q\, {{\rho}}^2\, {{\tau}}^2 \\ &&+{\Phi}\, {\alpha}_{2}\, q\, {\rho}\, {{\tau}}(3\tau-2\rho) + 2\, {\Phi}\, {\alpha}_{2}\, q\, {{\tau}}^3 + 2\, {\Phi}\, {\alpha}_{2}\, {{\rho}}^2\, {{\tau}}^2 + {\Phi}\, {\alpha}_{2}\, {\rho}\, {{\tau}}^3 + {\Phi}\, {{\gamma}}^3\, {{\tau}}^2+ {\Phi}\, {{\rho}}^2\, {{\tau}}^3\\ &&+{\Phi}\, {{\gamma}}^2\, q\, {{\tau}}(3\tau-\rho) + 2\, {\Phi}\, {{\gamma}}^2\, {\rho}\, {{\tau}}^2 + {\Phi}\, {{\gamma}}^2\, {{\tau}}^3+{\Phi}\, {\gamma}\, q^2\, {{\tau}}(3\tau-2\rho)+ {\Phi}\, {\gamma}\, q\, {\rho}\, {{\tau}}(3\tau-2\rho) \\ &&+ 2\, {\Phi}\, {\gamma}\, q\, {{\tau}}^3 + 2\, {\Phi}\, {\gamma}\, {{\rho}}^2\, {{\tau}}^2 + {\Phi}\, {\gamma}\, {\rho}\, {{\tau}}^3+ {\Phi}\, q^3\, {{\tau}}(\tau-\rho) + {\Phi}\, q^2\, {\rho}\, {{\tau}}(\tau-\rho) + {\Phi}q^2{{\tau}}(\tau^2-\rho^2)\\ &&+{\Phi}\, q\, {{\rho}}^2{{\tau}}(\tau-\rho) + {\Phi}\, q\, {\rho}\, {{\tau}}^3 + {\Phi}\, {{\rho}}^3\, {{\tau}}^2+ 7\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho}+ 3\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho}+ 6\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\tau}\\ &&+ 6\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\tau}+ 18\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\tau}}^2+ 5\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, {\rho}\, {\tau}+ 12\, {\Phi}\, {\alpha}_{1}\, q\, {\rho}\, {{\tau}}^2+ 4\, {\alpha}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^2\, {\tau}\\ &&+ {\Phi}\, {\alpha}_{2}\, {\gamma}\, q\, {{\tau}}(6\tau-2\rho)+ 33\, {\Phi}\, {{\alpha}_{1}}^3\, {\rho}\, {\tau}+ 12\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, q, \\ f_{3}& = &12\, {{\alpha}_{1}}^5\, {\tau} + 16\, {{\alpha}_{1}}^4\, {\alpha}_{2}\, {\tau} + 16\, {{\alpha}_{1}}^4\, {\gamma}\, {\tau} + 16\, {{\alpha}_{1}}^4\, q\, {\tau} + 16\, {{\alpha}_{1}}^4\, {\rho}\, {\tau} + 18\, {{\alpha}_{1}}^4\, {{\tau}}^2 + 7\, {{\alpha}_{1}}^3\, {{\alpha}_{2}}^2\, {\tau} \\ &&+ 14\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, q\, {\tau} + 14\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho}\, {\tau} + 21\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {{\tau}}^2 + 7\, {{\alpha}_{1}}^3\, {{\gamma}}^2\, {\tau} + 14\, {{\alpha}_{1}}^3\, {\gamma}\, q\, {\tau} + 14\, {{\alpha}_{1}}^3\, {\gamma}\, {\rho}\, {\tau}\\ &&+ 7\, {{\alpha}_{1}}^3\, q^2\, {\tau} + 14\, {{\alpha}_{1}}^3\, q\, {\rho}\, {\tau} + 21\, {{\alpha}_{1}}^3\, q\, {{\tau}}^2 + 7\, {{\alpha}_{1}}^3\, {{\rho}}^2\, {\tau} + 21\, {{\alpha}_{1}}^3\, {\rho}\, {{\tau}}^2 + 6\, {{\alpha}_{1}}^3\, {{\tau}}^3 + {{\alpha}_{1}}^2\, {{\alpha}_{2}}^3\, {\tau} \\ &&+ 3\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, q\, {\tau} + 3\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 8\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 16\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q^2\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho}\, {\tau} + 16\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 16\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 \\ &&+ 5\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\tau}}^3 + {{\alpha}_{1}}^2\, {{\gamma}}^3\, {\tau} + 3\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, q\, {\tau} + 3\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {\rho}\, {\tau} + 8\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\gamma}\, q^2\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {\rho}\, {\tau} \\ &&+ 16\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\gamma}\, {{\rho}}^2\, {\tau} + 16\, {{\alpha}_{1}}^2\, {\gamma}\, {\rho}\, {{\tau}}^2 + 5\, {{\alpha}_{1}}^2\, {\gamma}\, {{\tau}}^3 + {{\alpha}_{1}}^2\, q^3\, {\tau} + 3\, {{\alpha}_{1}}^2\, q^2\, {\rho}\, {\tau} + 8\, {{\alpha}_{1}}^2\, q^2\, {{\tau}}^2 \\ &&+ 3\, {{\alpha}_{1}}^2\, q\, {{\rho}}^2\, {\tau} + 16\, {{\alpha}_{1}}^2\, q\, {\rho}\, {{\tau}}^2 + 5\, {{\alpha}_{1}}^2\, q\, {{\tau}}^3 + {{\alpha}_{1}}^2\, {{\rho}}^3\, {\tau} + 8\, {{\alpha}_{1}}^2\, {{\rho}}^2\, {{\tau}}^2 + 5\, {{\alpha}_{1}}^2\, {\rho}\, {{\tau}}^3 + {\alpha}_{1}\, {{\alpha}_{2}}^3\, {{\tau}}^2 \\ &&+ 3\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {{\tau}}^2 + 3\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {{\tau}}^2 + {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {{\tau}}^2 \\ &&+ 3\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {{\tau}}^2+ 2\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\alpha}_{1}\, {\alpha}_{2}\, {\rho}\, {{\tau}}^3 + {\alpha}_{1}\, {{\gamma}}^3\, {{\tau}}^2 \\ && + 3\, {\alpha}_{1}\, {{\gamma}}^2\, {\rho}\, {{\tau}}^2+ {\alpha}_{1}\, {{\gamma}}^2\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\gamma}\, q^2\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\gamma}\, q\, {\rho}\, {{\tau}}^2 + 2\, {\alpha}_{1}\, {\gamma}\, q\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\alpha}_{1}\, {\gamma}\, {\rho}\, {{\tau}}^3 \\ &&+ {\alpha}_{1}\, q^3\, {{\tau}}^2 + 3\, {\alpha}_{1}\, q^2\, {\rho}\, {{\tau}}^2 + {\alpha}_{1}\, q^2\, {{\tau}}^3 + 3\, {\alpha}_{1}\, q\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\alpha}_{1}\, q\, {\rho}\, {{\tau}}^3 + {\alpha}_{1}\, {{\rho}}^3\, {{\tau}}^2 + {\alpha}_{1}\, {{\rho}}^2\, {{\tau}}^3\\ &&+14\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\gamma}\, {\tau}+ 21\, {{\alpha}_{1}}^3\, {\gamma}\, {{\tau}}^2+ 3\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\tau}+ 3\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\tau}}^2+ 2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^3+ 3\, {\alpha}_{1}\, {{\gamma}}^2\, q\, {{\tau}}^2 . \end{eqnarray*} |
[1] | World Health Organization, Global status report on alcohol and health, 2014. Avail- able from: https://www.who.int/substance_abuse/publications/global_alcohol_ report/msb_gsr_2014_1.pdf. |
[2] | Shanghai Institute of Environmental Economics Disaster Prevention Laboratory, China, 2018. Available from: http://www.saes.sh.cn/cn/index.asp. |
[3] | R. Bani, R. Hameed and S. Szymanowski, Influence of environmental factors on college alcohol drinking patterns, Math. Biosci. Eng., 10(2013), 1281–1300. |
[4] | G. Mulone and B. Straughan, Modeling binge drinking, Int. J. Biomath. 5(2012), 57–70. |
[5] | S. Mushayabasa and C. P. Bhunu, Modelling the effects of heavy alcohol consumption on the transmission dynamics of gonorrhea, Nonlinear Dynamics, 66(2011), 695–706. |
[6] | S. Lee, E. Jung and C. Castillo-Chavez, Optimal control intervention strategies in low- and high- risk problem drinking populations, Socio-economic Plan. Sci., 44(2010), 258–265. |
[7] | A. Mubayi, P. Greenwood and C. Castillo-Chavez, The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments, Socio-economic Plan. Sci., 44(2010), 45–56. |
[8] | H. F. Huo, Y. L. Chen and H. Xiang, Stability of a binge drinking model with delay, J. Biol. Dynam., 11(2017), 210–225. |
[9] | H. Xiang, Y. P. Liu and H. F. Huo, Stability of an sairs alcoholism model on scale-free networks, Physica A Statist. Mechan., 473(2017), 276–292. |
[10] | J. Cui, Y. Sun and H. Zhu, The impact of media on the control of infectious diseases, J. Dynam. Differ. Equat., 20(2008), 31–53. |
[11] | K. A. Pawelek, A. Oeldorf-Hirsch and L. Rong, Modeling the impact of twitter on influenza epi- demics, Math. Biosci. Eng. 11(2014), 1337–1356. |
[12] | H. F. Huo and X. M. Zhang, Modeling the Influence of Twitter in Reducing and Increasing the Spread of Influenza Epidemics, SpringerPlus, 5(2016), 88. |
[13] | H. F. Huo and X. M. Zhang, Complex dynamics in an alcoholism model with the impact of twitter, Math. Biosci., 281(2016), 24–35. |
[14] | H. F. Huo, P. Yang and H. Xiang, Stability and bifurcation for an seis epidemic model with the impact of media, Physica A Statist. Mechan. Appl., 490(2018), 702–720. |
[15] | X. Y. Meng and J. G. Wang, Analysis of a delayed diffusive model with Beddington-DeAngelis functional response, Int. J. Biomath., doi:10.1142/S1793524519500475. |
[16] | H. Xiang, M. X. Zou and H. F. Huo, Modeling the Effects of Health Education and Early Ther- apy on Tuberculosis Transmission Dynamics, International Journal of Nonlinear Sciences and Numerical Simulation, DOI:https://doi.org/10.1515/ijnsns-2016-0084. |
[17] | H. Xiang, Y. Y. Wang and H. F. Huo, Analysis of the binge drinking models with demographics and nonlinear infectivity on networks, J. Appl. Anal. Comput. 8(2018), 1535–1554. |
[18] | Y. L. Cai, J. J. Jiao and Z. J. Gui, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329(2018), 210–226. |
[19] | Z. Du and Z. Feng, Existence and asymptotic behaviors of traveling waves of a modified vector- disease model, Commu. Pure Appl. Anal., 17(2018), 1899–1920. |
[20] | X. B. Zhang, Q. H. Shi and S. H. Ma, Dynamic behavior of a stochastic SIQS epidemic model with levy jumps, Nonlinear Dynam., 93(2018), 1481–1493. |
[21] | W. M. Wang, Y. l. Cai and Z. Q. Ding, A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process, Physica A Statist. Mechan. Appl., 509(2018), 921– 936. |
[22] | X. Y. Meng and Y. Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifurc. Chaos, 28(2018), 1850042. |
[23] | National Institute on Alcohol Abuse and Alcoholism, United States of America, 2018. Available from: https://www.niaaa.nih.gov/. |
[24] | H. F. Huo, F. F. Cui and H. Xiang, Dynamics of an saits alcoholism model on unweighted and weighted network, Physica A Statist. Mechan., 496(2018), 321–335. |
[25] | H. F. Huo, R. Chen and X. Y. Wang, Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Modell., 40(2016), 6550–6559. |
[26] | H. F. Huo and M. X. Zou, Modelling effects of treatment at home on tuberculosis transmission dynamics, Appl. Math. Modell., 40(2016), 9474–9484. |
[27] | P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equi- libria for compartmental models of disease transmission, Math. Biosci., 180(2002), 29–48. |
[28] | L. Salle and P. Joseph, The stability of dynamical systems, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. |
[29] | C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1(2004), 361–401. |
[30] | A. D. Lê, D. Funk, S. Lo, et al., Operant self-administration of alcohol and nicotine in a preclinical model of co-abuse, Psychopharmacology, 231(2014), 4019–4029. |
1. | Zhan‐Ping Ma, Hai‐Feng Huo, Hong Xiang, Spatiotemporal patterns induced by delay and cross‐fractional diffusion in a predator‐prey model describing intraguild predation, 2020, 43, 0170-4214, 5179, 10.1002/mma.6259 | |
2. | Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang, Modeling and analysis of a H1N1 model with relapse and effect of Twitter, 2020, 560, 03784371, 125136, 10.1016/j.physa.2020.125136 | |
3. | Zizhen Zhang, Fangfang Yang, Wanjun Xia, Influence of time delay on bifurcation of a synthetic drug transmission model with psychological addicts, 2020, 2020, 1687-1847, 10.1186/s13662-020-02607-y | |
4. | Shuang-Lin Jing, Hai-Feng Huo, Hong Xiang, Modeling the Effects of Meteorological Factors and Unreported Cases on Seasonal Influenza Outbreaks in Gansu Province, China, 2020, 82, 0092-8240, 10.1007/s11538-020-00747-6 | |
5. | Zhong-Kai Guo, Hong Xiang, Hai-Feng Huo, Analysis of an age-structured tuberculosis model with treatment and relapse, 2021, 82, 0303-6812, 10.1007/s00285-021-01595-1 | |
6. | Hai-Feng Huo, Li-Na Gu, Hong Xiang, MODELLING AND ANALYSIS OF AN HIV/AIDS MODEL WITH DIFFERENT WINDOW PERIOD AND TREATMENT, 2021, 11, 2156-907X, 1927, 10.11948/20200279 | |
7. | Cheng-Cheng Zhu, Jiang Zhu, Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model, 2020, 17, 1551-0018, 3062, 10.3934/mbe.2020174 | |
8. | Qian Yang, Hai-Feng Huo, Hong Xiang, Analysis of an edge-based SEIR epidemic model with sexual and non-sexual transmission routes, 2023, 609, 03784371, 128340, 10.1016/j.physa.2022.128340 | |
9. | Banan Maayah, Omar Abu Arqub, Hilbert approximate solutions and fractional geometric behaviors of a dynamical fractional model of social media addiction affirmed by the fractional Caputo differential operator, 2023, 25900544, 100092, 10.1016/j.csfx.2023.100092 | |
10. | SHAHER MOMANI, R. P. CHAUHAN, SUNIL KUMAR, SAMIR HADID, ANALYSIS OF SOCIAL MEDIA ADDICTION MODEL WITH SINGULAR OPERATOR, 2023, 31, 0218-348X, 10.1142/S0218348X23400972 | |
11. | Ning Li, Yuequn Gao, Modified fractional order social media addiction modeling and sliding mode control considering a professionally operating population, 2024, 32, 2688-1594, 4043, 10.3934/era.2024182 | |
12. | Yasir Nadeem Anjam, Saira Tabassum, Muhammad Arshad, Mati ur Rahman, Muhammad Ateeq Tahir, Mathematical insights of social media addiction: fractal-fractional perspectives, 2024, 99, 0031-8949, 055230, 10.1088/1402-4896/ad348c | |
13. | Saduri Das, Prashant K. Srivastava, Pankaj Biswas, The role of social media in a tuberculosis compartmental model: Exploring Hopf-bifurcation and nonlinear oscillations, 2024, 03784754, 10.1016/j.matcom.2024.11.015 | |
14. | V. Madhusudanan, L. Guerrini, B. S. N. Murthy, Nhu-Ngoc Dao, Sungrae Cho, Exploring the Dynamics of Social Media Addiction and Depression Models With Discrete and Distributed Delays, 2025, 13, 2169-3536, 55682, 10.1109/ACCESS.2025.3555306 |
Parameter | Description | Value | Source |
\Lambda | The constant recruitment rate of the population | 0.7-0.8 day^{-1} | [30] |
\beta | Transmission coefficient from the moderate drinkers | ||
compartment to the light problem drinkers compartment | 0.0099 - 0.9 person^{-1} | Estimate | |
\alpha | The coefficient that determines how effective the positive | ||
drinking information can reduce the transmission rate | 0.00091 - 0.8 tweet^{-1} | Estimate | |
\rho | Transmission coefficient from the light problem drinkers | ||
compartment to the heavy problem drinkers compartment | 0.04 - 0.99 day^{-1} | Estimate | |
{\mu_1} | The rates that the moderate drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [11] | |
{\mu_2} | The rates that the light problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [11] | |
{\mu_3} | The rates that the heavy problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [11] | |
{\mu_4} | The rates that quitting drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [13] | |
{\alpha_1} | The natural death rate of the population | 0.009 - 0.6year^{-1} | [4,5] |
{\alpha_2} | The death rate due to heavy alcoholism | 0.02 - 0.5day^{-1} | Estimate |
q | Transmission coefficient from the heavy problem drinkers | ||
compartment to the moderate drinkers compartment | 0.006 - 0.99day^{-1} | Estimate | |
\gamma | Transmission coefficient from the heavy problem drinkers | ||
compartment to quitting drinkers compartment | 0.006 - 0.99day^{-1} | Estimate | |
{\tau} | The rate that message become outdated | 0.03 - 0.6year^{-1} | [11] |
Parameter | Description | Value | Source |
\Lambda | The constant recruitment rate of the population | 0.7-0.8 day^{-1} | [30] |
\beta | Transmission coefficient from the moderate drinkers | ||
compartment to the light problem drinkers compartment | 0.0099 - 0.9 person^{-1} | Estimate | |
\alpha | The coefficient that determines how effective the positive | ||
drinking information can reduce the transmission rate | 0.00091 - 0.8 tweet^{-1} | Estimate | |
\rho | Transmission coefficient from the light problem drinkers | ||
compartment to the heavy problem drinkers compartment | 0.04 - 0.99 day^{-1} | Estimate | |
{\mu_1} | The rates that the moderate drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [11] | |
{\mu_2} | The rates that the light problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [11] | |
{\mu_3} | The rates that the heavy problem drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [11] | |
{\mu_4} | The rates that quitting drinkers may tweet | ||
about alcoholism during an alcoholism occasion | 0 - 1 day^{-1} | [13] | |
{\alpha_1} | The natural death rate of the population | 0.009 - 0.6year^{-1} | [4,5] |
{\alpha_2} | The death rate due to heavy alcoholism | 0.02 - 0.5day^{-1} | Estimate |
q | Transmission coefficient from the heavy problem drinkers | ||
compartment to the moderate drinkers compartment | 0.006 - 0.99day^{-1} | Estimate | |
\gamma | Transmission coefficient from the heavy problem drinkers | ||
compartment to quitting drinkers compartment | 0.006 - 0.99day^{-1} | Estimate | |
{\tau} | The rate that message become outdated | 0.03 - 0.6year^{-1} | [11] |