
Mathematical Biosciences and Engineering, 2019, 16(4): 23912410. doi: 10.3934/mbe.2019120
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Traveling waves of di usive disease models with time delay and degeneracy
1 School of Mathematics, Sun YatSen University, Guangzhou 510275, P.R China
2 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
Received: , Accepted: , Published:
References
1. W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721.
2. F. J. Richards, A flexible growth function for empirical use, J. Experi. Botany, 10 (1959), 290–300.
3. M. E. Gilpin and F. J. Ayala, Global models of growth and competition, Proc. Natl. Acad. Sci., 70 (1973), 3590–3593.
4. J. V. Ross, A note on density dependence in population models, Ecol. Model., 220 (2009), 3472–3474.
5. Y. H. Hsieh and Y. S. Cheng, Realtime forecast of multiphase outbreak, Emerg. Infect. Dis., 12 (2006), 122–127.
6. Y.H. Hsieh and C.W.S. Chen, Turning points, reproduction number, and impact of climatological events for multiwave dengue outbreaks, Trop. Med. Int. Health, 14 (2009), 628–638.
7. Y.H. Hsieh, Pandemic influenza A (H1N1) during winter influenza season in the southern hemisphere, Influenza Other Respir. Viruses, 4 (2010), 187–197.
8. X.S.Wang, J.Wu and Y. Yang, Richards model revisited: validation by and application to infection dynamics, J. Theoret. Biol., 313 (2012), 12–19.
9. F. Brauer, Some simple epidemic models, Math. Biosci. Eng., 3 (2006), 1–15.
10. C.M. KribsZaleta, To switch or taper off: The dynamics of saturation, Math. Biosc., 192 (2004), 137–152.
11. O. Diekmann, M. C. M. de Jong and A. A. de Koeijer, et al., The force of infection in populations of varying size: a modelling problem, J. Biol. Systems, 3 (1995), 519–529.
12. Y. Kuang, Delay differential equations with applications in population dynamics, Math. Sci. Eng., 191. Academic Press, Inc., Boston, MA, 1993.
13. G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamics models with nonlinear incidence, J. Math. Biol., 63 (2011), 125–139.
14. J. D. Murray, E. A. Stanley and D. L. Brown, On the spatial spread of rabies among foxes, Proc. Roy. Soc. London Ser. B, 229 (1986), 111–150.
15. J. AlOmari and S. A. Gourley, Monotone travelling fronts in an agestructured reactiondiffusion model of a single species, J. Math. Biol., 45 (2002), 294–312.
16. O. Diekmann, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109–130.
17. T. Faria and S. Trofimchuk, Nonmonotone travelling waves in a single species reactiondiffusion equation with delay, J. Differ. Equations, 228 (2006), 357–376.
18. X. Liang and X.Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1–40.
19. H. Thieme and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reactiondiffusion models, J. Differ. Equations, 195 (2003), 430–470.
20. A. Källén, Thresholds and travelling waves in an epidemic model for rabies, Nonlinear Anal., 8 (1984), 851–856.
21. Y. Hosono and B. Ilyas, Existence of traveling waves with any positive speed for a diffusive epidemic model, Nonlinear World, 1 (1994), 277–290.
22. Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci., 5 (1995), 935–966.
23. S. R. Dunbar, Travelling wave solutions of diffusive LotkaVolterra equations, J. Math. Biol., 17 (1983), 11–32.
24. S. R. Dunbar, Traveling wave solutions of diffusive LotkaVolterra equations: A heteroclinic connection in R4, Trans. Amer. Math. Soc., 286 (1984), 557–594.
25. W. Huang, A geometric approach in the study of traveling waves for some classes of nonmonotone reactiondiffusion systems, J. Differ. Equations, 260 (2016), 2190–2224.
26. W. T. Li, G. Lin, C. Ma and F. Y. Yang, Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 467–484.
27. Z. C. Wang and J. Wu, Travelling waves of a diffusive KermackMcKendrick epidemic model with nonlocal delayed transmission, Proc. R. Soc. Lond. Ser. A, 466 (2010), 237–261.
28. K. Zhou, M. Han and Q. Wang, Traveling wave solutions for a delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies, Math. Methods Appl. Sci., 40 (2017), 2772–2783.
29. J. Li and X. Zou, Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain, Bull. Math. Biol., 71 (2009), 2048–2079.
30. Z. Xu, Wave propagation in an infectious disease model, J. Math. Anal. Appl., 449 (2017), 853–871.
31. M. A. Lewis, B. Li and H. F.Weinberger, Spreading speed and linear determinacy for twospecies competition models, J. Math. Biol., 45 (2002), 219–233.
32. H. F.Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183–218.
33. H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems, J. Math. Biol., 55 (2007), 207–222.
34. H. Wang, Spreading speeds and traveling waves for noncooperative reactiondiffusion systems, J. Nonlinear Sci., 21 (2011), 747–783.
35. H. Wang and X.S. Wang, Traveling wave phenomena in a KermackMcKendrick SIR model, J. Dynam. Differ. Equations, 28 (2016), 143–166.
36. D. V. Widder, The Laplace transform, Princeton University Press, Princeton, N. J., 1941.
37. Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Anal. Real World Appl., 13 (2012), 2120– 2133.
38. C. C. McCluskey, Complete global stability for an SIR epidemic model with delaydistributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 55–59.
39. C. Paulhus and X.S. Wang, Global stability analysis of a delayed susceptibleinfectedsusceptible epidemic model, J. Biol. Dyn., 9 (2015), S45–S50.
40. X. S. Wang, H. Wang and J. Wu, Traveling waves of diffusive predatorprey systems: disease outbreak propagation, Discrete Contin. Dyn. Syst., 32 (2012), 3303–3324.
41. T. Zhang, Minimal wave speed for a class of noncooperative reactiondiffusion systems of three equations, J. Differ. Equations, 262 (2017), 4724–4770.
42. T. Zhang, W. Wang and K. Wang, Minimal wave speed for a class of noncooperative diffusionreaction system, J. Differ. Equations, 260 (2016), 2763–2791.
43. F. Y. Yang and W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131–1146.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)