
Mathematical Biosciences and Engineering, 2019, 16(4): 20492062. doi: 10.3934/mbe.2019100
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Renormalization group analysis of heat transfer in the presence of endothermic and exothermic chemical reactions
1 Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, 2a, Zhelyabov Str., Kiev, 03057, Ukraine
2 Institute of General Mechanical Engineering, TH Köln–University of Applied Sciences, 51643 Gummersbach, Germany
Received: , Accepted: , Published:
Special Issues: Inverse problems in the natural and social sciences
References
1. M. GellMann and F. Low, Quantum electrodynamics at small distances, Phys. Rev., 95 (1954), 1300–1312.
2. K. G. Wilson, Renormalization group and critical phenomena and the Kondo problem, Phys. Rev. B., 4 (1971), 3174–3187.
3. R. H. Kraichnan, The structure of isotropic turbulence at very high Reynolds number, J. Fluid Mech., 5 (1959), 497–543.
4. D. Forster, D. R. Nelson and M. J. Stephen, Largedistance and longtime properties of a randomly stirred fluid, Phys. Rev. А., 16 (1977), 732–749.
5. C. De Dominicis and P. C. Martin, Energy spectra of certain randomlystirred fluids, Phys. Rev. А., 19 (1979), 419–422.
6. J. D. Fournier and U. Frisch, Remarks on the renormalization group in statistical fluid dynamics. Phys. Rev. 28 (1983), 1000–1002.
7. V. Yakhot and S. A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Соmp. 1 (1986), 3–51.
8. R. H. Kraichnan, An interpretation of the Yakhot–Orszag turbulence theory, Phys. Fluids, 30 (1987), 2400–2405.
9. L. M. Smith and W. С. Reynolds, On the Yakhot–Orszag renormalization group method for deriving turbulence statistics and models, Phys. Fluids A., 4 (1992), 364–390.
10. V. Yakhot, S. A. Orszag, S. Thangam, et al., Development of turbulence models for shear flows by double expansion technique, Phys. Fluids A., 4 (1992), 1510–1520.
11. R. Rubinstein and J. M. Barton, Nonlinear Reynolds stress models and the renormalization group, Phys. Fluids A., 2 (1990), 1472–1485.
12. С. G. Speziale, T. B. Gatski and N. Fitzmaurice, An analysis of RNG based turbulence models for homogeneous shear flow, Phys. Fluids A., 3 (1991), 2278–2281.
13. G. L. Eyink, Renormalization group and operatorproduct expansion in turbulence: shell models, Phys. Rev. E., 48 (1993), 1823–1837.
14. G. L. Eyink, The renormalization group method in statistical hydrodynamics, Phys. Fluids., 6 (1994), 3063–3078.
15. V. Yakhot and L.M. Smith, The renormalization group, the eexpansion and derivation of turbulence models, J. Sci. Comput., 7 (1992), 35–52.
16. A. A. Avramenko and A. V. Kuznetsov, Renormalization group model of largescale turbulence in porous media, Transport Porous Med., 63 (2006), 175–193.
17. A. A. Avramenko, N. P. Dmitrenko and A. I. Tyrinov, Renormalization group analysis of the stability of turbulent flows in porous media, J. Eng. Phys. Thermophys., 89 (2016), 592–605.
18. A. A. Avramenko, I. V. Shevchuk, A. V. Kravchuk, et al., Application of renormalization group analysis to twophase turbulent flows with solid dust particles, J. Math. Physics, 59 (2018), 073101.
19. M. P. Martίn and G. V. Candler, Effect of chemical reactions on decaying isotropic turbulence, Phys. Fluids, 10 (1998), 1715–1724.
20. S. Subramanian and V. Balakotaiah, Convective instabilities induced by exothermic reactions occurring in a porous medium, Phys. Fluids, 6 (1994), 2907–2922.
21. K. A. Maleque, Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation, J. Thermodynamics, (2013).
22. D. T. Conroy and S. G. L. Smith, Endothermic and exothermic chemically reacting plumes, J. Fluid Mech., 612 (2008), 291–310.
23. A. A. Avramenko, S. G. Kobzar, I. V. Shevchuk, et al., Symmetry of turbulent boundary layer flows: investigation of different eddy viscosity models, Acta Mechanica, 151 (2001), 1–14.
24. A. A. Avramenko, D. G. Blinov, I. V. Shevchuk, et al., Symmetry analysis and selfsimilar forms of fluid flow and heatmass transfer in turbulent boundary layer flow of a nanofluid, Phys. Fluids, 24 (2012), 092003.
25. A. A. Avramenko, I. V. Shevchuk, S. Abdallah, et al., Symmetry analysis for film boiling of nanofluids on a vertical plate using a nonlinear approach, J. Molecular Liquids, 223 (2016) 156–164.
26. W. D. McComb, The Physics of Fluid Turbulence, (1990) Clarendon Press, Oxford.
27. J. C. Collins, Renormalization. An introduction to renormalization, the renormalization group and the operatorproduct expansion, Cambridge university press, (1984), 380.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)