Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Modeling cholera dynamics at multiple scales: environmental evolution, between-host transmission, and within-host interaction

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

Cholera is an acute intestinal illness caused by infection with the bacterium Vibrio cholerae. The dynamics of the disease transmission are governed by human-human, environment-human, and within-human sub-dynamics. A multi-scale model is presented to incorporate all three of these dynamical components. The model is divided into three subsystems where the dynamics are analyzed according to their respective time scales. For each subsystem, we conduct a careful equilibrium analysis, with a focus on the disease threshold characterized by the basic reproduction number. Finally, the three subsystems are combined to discuss the dynamical properties of the full system.
  Figure/Table
  Supplementary
  Article Metrics

References

1. J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti: an epidemic model, Lancet, 377 (2011), 1248–1255.

2. A. Bechette, T. Stojsavljevic, M. Tessmer, J. A. Berges, G. A. Pinter and E. B. Young, Mathematical modeling of bacteria-virus interactions in Lake Michigan incorporating phosphorus content,J. Great Lakes Res., 39 (2013), 646–654.

3. B. Boldin and O. Diekmann, Superinfections can induce evolutionarily stable coexistence of pathogens,J. Math. Biol., 56 (2008), 635–672.

4. V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region,Rev. Epidemiol. Sante, 27 (1979), 121–132.

5. C. Castillo-Chavez, Z. Feng and W. Huang, On the computation of R0 and its role in global stability, inMathematical Approaches for Emerging and Reemerging Infectious Diseases: an Introduction, (2002), 229–250.

6. C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,Math. Biosci. Eng., 1 (2004), 361–404.

7. R. R. Colwell, A global and historical perspective of the genus Vibrio, inThe Biology of Vibrios, (eds. F.L. Thompson, B. Austin and J. Swings), ASM Press: Washington DC, 2006.

8. F. R. Gantmacher and J. L. Brenner,Applications of the Theory of Matrices, Dover: Mineola, 2005.

9. D. M. Hartley, J. G. Morris and D. L. Smith, Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med., 3 (2006), 0063–0069.

10. H. W. Hethcote, The mathematics of infectious diseases,SIAM Rev., 42 (200) 599–653.

11. M. Y. Li and J. S. Muldowney, A geometric approach to global-stability problems,SIAM J. Math. Anal., 27 (1996), 1070–1083.

12. N. Mideo, S. Alizon and T. Day, Linking within- and between-host disease dynamics, Trends Ecol. Evol., 23 (2008), 511–517.

13. Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith and J. G. Morris, Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe,Proc. Natl. Acad. Sci. USA, 108 (2011), 8767–8772.

14. J. D. Murray,Mathematical Biology, Springer, 2002.

15. E. J. Nelson, J. B. Harris, J. G. Morris, S. B. Calderwood and A. Camilli, Cholera transmission: The host, pathogen and bacteriophage dynamics,Nat. Rev. Microbiol., 7 (2009), 693–702.

16. L. Perko,Differential Equations and Dynamical Systems, Springer Science & Business Media: New York, 2013.

17. D. Posny and J. Wang, Modelling cholera in periodic environments,J. Biol. Dyn., 8 (2014) 1–19.

18. Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions,SIAM J. Appl. Math., 73 (2013), 1513–1532.

19. H. L. Smith and R. T. Trevino, Bacteriophage infection dynamics: multiple host binding sites, Math. Model. Nat. Pheno., 4 (2009), 111–136.

20. S.H. Strogatz,Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering, Westview Press: Boulder, 2015.

21. H. R. Thieme,Mathematics in Population Biology, Princeton University Press: Princeton, 2003.

22. J. P. Tian and J. Wang, Global stability for cholera epidemic models,Math. Biosci., 232 (2011), 31–41.

23. J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model,Bull. Math. Biol., 72 (2010), 1506–1533.

24. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,Math. Biosci., 180 (2002), 29–48.

25. M. K.Waldor and J. J. Mekalanos, Lysogenic conversion by a filamentous phage encoding cholera toxin,Science, 272 (1996), 1910–1914.

26. J. Wang and S. Liao, A generalized cholera model and epidemic-endemic analysis,J. Biol. Dyn., 6 (2012), 568–589.

27. X.Wang and J.Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 9 (1) (2015), 233–261.

28. X. Wang, D. Gao and J. Wang, Influence of human behavior on cholera dynamics,Math. Biosci., 267 (2015), 41–52.

29. X. Wang and J. Wang, Disease dynamics in a coupled cholera model linking within-host and between-host interactions,J. Biol. Dyn., 11(S1) (2017), 238–262.

30. X. Wang and J. Wang, Modeling the within-host dynamics of cholera: bacterial-viral interaction, J. Biol. Dyn., 11(S2) (2017), 484–501.

31. WHO Weekly Epidemiology Bulletin, 2-8 April 2018.

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved