
Mathematical Biosciences and Engineering, 2019, 16(2): 636666. doi: 10.3934/mbe.2019031.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Dynamical analysis of an agestructured multigroup SIVS epidemic model
1 Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, P.R. China
2 Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, Shanxi 030006, P.R. China
Received: , Accepted: , Published:
Keywords: multigroup epidemic model; the next generation operator; global attractivity
Citation: Junyuan Yang, Rui Xu, Xiaofeng Luo. Dynamical analysis of an agestructured multigroup SIVS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(2): 636666. doi: 10.3934/mbe.2019031
References:
 1. R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1992.
 2. G.P. Sahu and J. Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with preexisting immunity, J. Math. Anal. Appl., 421 (2015), 1651–1672.
 3. X. Peng, X. Xu, X. Fu and T. Zhou, Vaccination intervention on epidemic dynamics in networks, Phys. Rev. E, 87 (2013), 022813.
 4. W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115 (1927), 700–721.
 5. W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics: II, Proc. R. Soc. Lond. Ser. B, 138 (1932), 55–83.
 6. W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics: III, Proc. R. Soc. Lond. Ser. B, 141 (1933), 94–112.
 7. J. Li and Y. Yang, SIRSVS epidemic models with continuous and impulsive vaccination strategies, J. Theor. Biol., 280 (2011), 108–116.
 8. C. M. KribsZaleta and J. X. VelascoHern´andez, A simple vaccination model with multiple endemic states, Math. Biosci., 164 (2000), 183201.
 9. L. Nie, J. Shen and C. Yang, Dynamic behavior analysis of SIVS epidemic models with statedependent pulse vaccination, Nonlinear Anal.Hybrid Syst., 27 (2018), 258–270.
 10. D. Zhao, T. Zhang and S. Yuan, The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence, Physica A, 443 (2016), 372–379.
 11. Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model, Nonlinear Anal: RWA, 11 (2010), 4154–4163.
 12. M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015.
 13. J. S. Lavineabc, O. N. BjØrnstadab, B. F. de Blasiode and J. Storsaeter, Shortlived immunity against pertussis, agespecific routes of transmission, and the utility of a teenage booster vaccine, Vaccine, 30 (2012), 544–551.
 14. A. Lajmanovich and J. A. York, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci. 28 (1976), 221–236.
 15. T. Kuniya, J. Wang and H. Inaba, Multigroup SIR epidemic model with age structure, Discrete Contin. Dyn. Syst.Ser. B, 21 (2016), 3515–3550.
 16. M. Eichner and K. Dietz, Transmission potential of smallpox: estimates based on detailed data from an outbreak, Am. J. Epidemiol., 158 (2003), 110–117.
 17. H. Nishiura and M. Eichner, Infectiousness of smallpox relative to disease age: estimates based on transmission network and incubation period, Epidemiol. Infect., 135 (2007), 1145–1150.
 18. F. Cooper, NonMarkovian network epidemics, MA Thesis, 2013. Available from: www.dtc.ox. ac.uk/people/13/cooperf/files/MA469ThesisFergusCooper.pdf
 19. J. Wang and H. Shu, Global analysis on a class of multigroup SEIR model with latency and relapse, Math. Biosci. Eng., 13 (2016), 209–225.
 20. T. Kuniya, Global stability of a multigroup SVIR epidemic model, Nonlinear Anal: RWA, 14 (2013), 1135–1143.
 21. H. Guo, M. Y. Li and Z. Shuai, A graphtheoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 136 (2008), 2793–2802.
 22. P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infectionage model, Appl. Anal., 89 (2010), 1109–1140.
 23. P. Magal, Compact attractors for timeperiodic agestructured population models, Electron. J. Differ. Eq., 2001 (2001), 1–35.
 24. O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R_{0} in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382.
 25. H. Inaba, The Malthusian parameter and R0 for heterogeneous populations in periodic environments, Math. Biosci. Eng., 9 (2012), 313–346.
 26. M. A. Krasnoselskii, Positive Solutions of Operator Equations, 1st edition, Noordhoff, Groningen, 1964.
 27. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Am. Math. Soc. Transl., 1950, 128.
 28. J. K. Hale, Asymptotic Behavior of Dissipative Systems, in: Math. Surv. Monogr., vol. 25, Am. Math. Soc., Providence, RI, 1988.
 29. H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, 1st edition, Amer. Math. Soc., Providence, 2011.
 30. J. A. Walker, Dynamical Systems and Evolution Equations, 1st edition, Plenum Press, New York and London, 1980.
 31. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover Books on Mathematics), Dover Publications, INC, Mineola, New York, 1999.
 32. G. F. Webb, Theory of Nonlinear AgeDependent Population Dynamics, Marcel Dekker, New York, 1985.
 33. Centers for Disease Control and Prevention, Genital HPV Infection  Fact Sheet, 2017. Avaialbe from: https://www.cdc.gov/std/hpv/stdfacthpv.htm.
 34. H. R. Thieme, Mathematics in Population Biology. Priceton University Press, Princeton, 2003.
 35. W. M. Hirsch, H. Hanisch, J. P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Comm. Pure Appl. Math., 38 (1985), 733–753.
 36. J. Y. Yang and F. Xu, Global stability of two SIS epidemic meanfield models on complex networks: Lyapunov functional approach. J. Franklin Inst., 355 (2018), 6763–6779.
 37. Z. H. Liu and R. Yuan, ZeroHopf bifurcation for an infectionage structured epidemic model with a nonlinear incidence rate, Sci. China Math., 60 (2017), 1371–1398.
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *