Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion

. Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA

Recent experience of the Ebola outbreak in 2014 highlighted the importance of immediate response measure to impede transmission in the early stage. To this aim, efficient and effective allocation of limited resources is crucial. Among the standard interventions is the practice of following up with the recent physical contacts of the infected individuals -- known as contact tracing. In an effort to understand the effects of contact tracing protocols objectively, we explicitly develop a model of Ebola transmission incorporating contact tracing. Our modeling framework is individual-based, patient-centric, stochastic and parameterizable to suit early-stage Ebola transmission. Notably, we propose an activity driven network approach to contact tracing, and estimate the basic reproductive ratio of the epidemic growth in different scenarios. Exhaustive simulation experiments suggest that early contact tracing paired with rapid hospitalization can effectively impede the epidemic growth. Resource allocation needs to be carefully planned to enable early detection of the contacts and rapid hospitalization of the infected people.

  Article Metrics

Keywords Contact tracing; Ebola; compartmental model; activity-driven network; epidemic model

Citation: Narges Montazeri Shahtori, Tanvir Ferdousi, Caterina Scoglio, Faryad Darabi Sahneh. Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. Mathematical Biosciences and Engineering, 2018, 15(5): 1165-1180. doi: 10.3934/mbe.2018053


  • [1] C. Browne,H. Gulbudak,G. Webb, Modeling contact tracing in outbreaks with application to Ebola, Journal of Theoretical Biology, 384 (2015): 33-49.
  • [2] G. Chowell,C. Viboud, Is it growing exponentially fast?-Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics, Infectious Disease Modelling, 1 (2016): 71-78.
  • [3] O. Diekmann,J. A. P. Heesterbeek,J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28 (1990): 365-382.
  • [4] M. G. Dixon,I. J. Schafer, Ebola Viral Disease Outbreak - West Africa, 2014, MMWR Morb Mortal Wkly Rep, 63 (2014): 548-551.
  • [5] K. T. Eames,M. J. Keeling, Contact tracing and disease control, Proceedings of the Royal Society of London B: Biological Sciences, 270 (2003): 2565-2571.
  • [6] F. O. Fasina, A. Shittu, D. Lazarus, O. Tomori, L. Simonsen, C. Viboud and G. Chowell, Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014, Eurosurveillance, 19 (2014), 20920.
  • [7] M. Greiner,D. Pfeiffer,R. D. Smith, Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests, Preventive Veterinary Medicine, 45 (2000): 23-41.
  • [8] J. M. Heffernan,R. J. Smith,L. M. Wahl, Perspectives on the basic reproductive ratio, Journal of the Royal Society Interface, 2 (2005): 281-293.
  • [9] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, NJ, 2008.
  • [10] I. Z. Kiss,D. M. Green,R. R. Kao, Disease contact tracing in random and clustered networks, Proceedings of the Royal Society of London B: Biological Sciences, 272 (2005): 1407-1414.
  • [11] D. Klinkenberg,C. Fraser,H. Heesterbeek, The effectiveness of contact tracing in emerging epidemics, PloS One, 1 (2006): e12.
  • [12] S. Liu,N. Perra,M. Karsai,A. Vespignani, Controlling contagion processes in activity driven networks, Physical review letters, 112 (2014): 118702.
  • [13] A. S. da Mata and R. Pastor-Satorras, Slow relaxation dynamics and aging in random walks on activity driven temporal networks, The European Physical Journal B, 88 (2015), Art. 38, 8 pp.
  • [14] N. Perra, B. Gonçalves, R. Pastor-Satorras and A. Vespignani, Activity Driven Modeling of Time Varying Networks, Scientific Reports, 2012.
  • [15] N. Perra,A. Baronchelli,D. Mocanu,B. Gonc'calves,R. Pastor-Satorras,A. Vespignani, Random walks and search in time-varying networks, Physical review letters, 109 (2012): 238701.
  • [16] A. Rizzo,B. Pedalino,M. Porfiri, A network model for Ebola spreading, Journal of theoretical biology, 394 (2016): 212-222.
  • [17] A. Rizzo,M. Frasca,M. Porfiri, Effect of individual behavior on epidemic spreading in activity-driven networks, Physical Review E, 90 (2014): 042801.
  • [18] A. Rizzo and M. Porfiri, Toward a realistic modeling of epidemic spreading with activity driven networks, in Temporal Network Epidemiology (N. Masuda and P. Holme), Springer, (2017), 317-319.
  • [19] N. M. Shahtori,C. Scoglio,A. Pourhabib,F. D. Sahneh, Sequential Monte Carlo filtering estimation of Ebola progression in West Africa, American Control Conference(ACC), null (2016): 1277-1282.
  • [20] M. D. Shirley,S. P. Rushton, The impacts of network topology on disease spread, Ecological Complexity, 2 (2005): 287-299.
  • [21] F. Shuaib,R. Gunnala,E. O. Musa,F. J. Mahoney,O. Oguntimehin,P. M. Nguku,S. B. Nyanti,N. Knight,N. S. Gwarzo,O. Idigbe,A. Nasidi,J. F. Vertefeuille, Ebola virus disease outbreak-Nigeria, July-September 2014, MMWR Morb Mortal Wkly Rep, 63 (2014): 867-872.
  • [22] M. Starnini,R. Pastor-Satorras, Temporal percolation in activity-driven networks, Physical Review E, 89 (2014): 032807.
  • [23] M. Starnini,R. Pastor-Satorras, Topological properties of a time-integrated activity-driven network, Physical Review E, 87 (2013): 062807.
  • [24] K. Sun, A. Baronchelli and N. Perra, Contrasting effects of strong ties on SIR and SIS processes in temporal networks, The European Physical Journal B, 88 (2015), Art. 326, 8 pp.
  • [25] L. Zino,A. Rizzo,M. Porfiri, Continuous-Time Discrete-Distribution Theory for Activity-Driven Networks, Physical Review Letters, 117 (2016): 228302.
  • [26] Cases of Ebola Diagnosed in the United States, 2014. Available from: https://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/united-states-imported-case.html.
  • [27] Implementation and Management of Contact Tracing for Ebola Virus Disease, Emergency Guideline by the World Health Organization, 2015. Available from: https://www.cdc.gov/vhf/ebola/pdf/contact-tracing-guidelines.pdf.


This article has been cited by

  • 1. Rong Zhou, Qingchu Wu, Epidemic spreading dynamics on complex networks with adaptive social-support, Physica A: Statistical Mechanics and its Applications, 2019, 10.1016/j.physa.2019.03.107
  • 2. Mahbubul H. Riad, Musa Sekamatte, Felix Ocom, Issa Makumbi, Caterina M. Scoglio, Risk assessment of Ebola virus disease spreading in Uganda using a two-layer temporal network, Scientific Reports, 2019, 9, 1, 10.1038/s41598-019-52501-1
  • 3. Tanvir Ferdousi, Sifat Afroj Moon, Adrian Self, Caterina Scoglio, Willem F. de Boer, Generation of swine movement network and analysis of efficient mitigation strategies for African swine fever virus, PLOS ONE, 2019, 14, 12, e0225785, 10.1371/journal.pone.0225785
  • 4. Sifat A. Moon, Tanvir Ferdousi, Adrian Self, Caterina M. Scoglio, Estimation of swine movement network at farm level in the US from the Census of Agriculture data, Scientific Reports, 2019, 9, 1, 10.1038/s41598-019-42616-w
  • 5. Hyunju Kim, Ayan Paul, Contact Tracing: A Game of Big Numbers in the Time of COVID-19, SSRN Electronic Journal , 2020, 10.2139/ssrn.3590183

Reader Comments

your name: *   your email: *  

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved