An age-structured vector-borne disease model with horizontal transmission in the host

  • Received: 04 April 2017 Accepted: 22 March 2018 Published: 01 October 2018
  • MSC : Primary: 34K20, 92D25; Secondary: 35A24

  • We concern with a vector-borne disease model with horizontal transmission and infection age in the host population. With the approach of Lyapunov functionals, we establish a threshold dynamics, which is completely determined by the basic reproduction number. Roughly speaking, if the basic reproduction number is less than one then the infection-free equilibrium is globally asymptotically stable while if the basic reproduction number is larger than one then the infected equilibrium attracts all solutions with initial infection. These theoretical results are illustrated with numerical simulations.

    Citation: Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host[J]. Mathematical Biosciences and Engineering, 2018, 15(5): 1099-1116. doi: 10.3934/mbe.2018049

    Related Papers:

    [1] Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar . Optimal control for continuous supply network models. Networks and Heterogeneous Media, 2006, 1(4): 675-688. doi: 10.3934/nhm.2006.1.675
    [2] Simone Göttlich, Oliver Kolb, Sebastian Kühn . Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks and Heterogeneous Media, 2014, 9(2): 315-334. doi: 10.3934/nhm.2014.9.315
    [3] Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli . A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2(4): 661-694. doi: 10.3934/nhm.2007.2.661
    [4] Michael Herty, Veronika Sachers . Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2(4): 733-750. doi: 10.3934/nhm.2007.2.733
    [5] Alexandre M. Bayen, Alexander Keimer, Nils Müller . A proof of Kirchhoff's first law for hyperbolic conservation laws on networks. Networks and Heterogeneous Media, 2023, 18(4): 1799-1819. doi: 10.3934/nhm.2023078
    [6] Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379
    [7] Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang . Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10(4): 749-785. doi: 10.3934/nhm.2015.10.749
    [8] Mauro Garavello . A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5(3): 565-581. doi: 10.3934/nhm.2010.5.565
    [9] Ciro D'Apice, Peter I. Kogut, Rosanna Manzo . On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501
    [10] Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193
  • We concern with a vector-borne disease model with horizontal transmission and infection age in the host population. With the approach of Lyapunov functionals, we establish a threshold dynamics, which is completely determined by the basic reproduction number. Roughly speaking, if the basic reproduction number is less than one then the infection-free equilibrium is globally asymptotically stable while if the basic reproduction number is larger than one then the infected equilibrium attracts all solutions with initial infection. These theoretical results are illustrated with numerical simulations.


    [1] [ C. J. Browne,S. S. Pilyugin, Global analysis of age-structured within-host virus model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013): 1999-2017.
    [2] [ Y. Chen,S. Zou,J. Yang, Global analysis of an SIR epidemic model with infection age and saturated incidence, Nonlinear Anal. Real World Appl., 30 (2016): 16-31.
    [3] [ K. Dietz, L. Molineaux and A. Thomas, A malaria model tested in the African savannah, Bull. World Health Organ., 50(1974), 347-357.
    [4] [ X. Feng,S. Ruan,Z. Teng,K. Wang, Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China, Math. Biosci., 266 (2015): 52-64.
    [5] [ Z. Feng,J. X. Velasco-HerNández, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35 (1997): 523-544.
    [6] [ F. Forouzannia,A. B. Gumel, Mathematical analysis of an age-structured model for malaria transmission dynamics, Math. Biosci., 247 (2014): 80-94.
    [7] [ J. K. Hale, Asymptotic Behavior of Dissipative Systems, Am. Math. Soc., Providence, RI, 1988.
    [8] [ H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000): 599-653.
    [9] [ M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori E Stampatori, Pisa, 1995.
    [10] [ H. Inaba,H. Sekine, A mathematical model for Chagas disease with infection-age-dependent infectivity, Math. Biosci., 190 (2004): 39-69.
    [11] [ Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, Boston, MA, 1993.
    [12] [ A. A. Lashari,G. Zaman, Global dynamics of vector-borne diseases with horizontal transmission in host population, Comput. Math. Appl., 61 (2011): 745-754.
    [13] [ Y. Lou,X.-Q. Zhao, A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math., 70 (2010): 2023-2044.
    [14] [ G. Macdonald, The analysis of equilibrium in malaria, Trop. Dis. Bull., 49 (1952): 813-829.
    [15] [ P. Magal,C. C. McCluskey,G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010): 1109-1140.
    [16] [ A. V. Melnik,A. Korobeinikov, Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility, Math. Biosci. Eng., 10 (2013): 369-378.
    [17] [ V. N. Novosltsev, A. I. Michalski, J. A. Novoseltsevam A. I. Tashin, J. R. Carey and A. M. Ellis, An age-structured extension to the vectorial capacity model, PloS ONE, 7 (2012), e39479.
    [18] [ Z. Qiu, Dynamical behavior of a vector-host epidemic model with demographic structure, Comput. Math. Appl., 56 (2008): 3118-3129.
    [19] [ R. Ross, The Prevention of Malaria, J. Murray, London, 1910.
    [20] [ R. Ross, Some quantitative studies in epidemiology, Nature, 87 (1911): 466-467.
    [21] [ S. Ruan,D. Xiao,J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008): 1098-1114.
    [22] [ H. R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosci., 166 (2000): 173-201.
    [23] [ J. Tumwiine,J. Y. T. Mugisha,L. S. Luboobi, A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity, Appl. Math. Comput., 189 (2007): 1953-1965.
    [24] [ C. Vargas-de-León, Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes, Math. Biosci. Eng., 9 (2012): 165-174.
    [25] [ C. Vargas-de-León,L. Esteva,A. Korobeinikov, Age-dependency in host-vector models: The global analysis, Appl. Math. Comput., 243 (2014): 969-981.
  • This article has been cited by:

    1. C. D'Apice, R. Manzo, B. Piccoli, Numerical Schemes for the Optimal Input Flow of a Supply Chain, 2013, 51, 0036-1429, 2634, 10.1137/120889721
    2. Mauro Garavello, Benedetto Piccoli, Time-varying Riemann solvers for conservation laws on networks, 2009, 247, 00220396, 447, 10.1016/j.jde.2008.12.017
    3. Simone Göttlich, Stephan Martin, Thorsten Sickenberger, Time-continuous production networks with random breakdowns, 2011, 6, 1556-181X, 695, 10.3934/nhm.2011.6.695
    4. S. Göttlich, M. Herty, C. Ringhofer, U. Ziegler, Production systems with limited repair capacity, 2012, 61, 0233-1934, 915, 10.1080/02331934.2011.615395
    5. Felix Bestehorn, Christoph Hansknecht, Christian Kirches, Paul Manns, 2019, A switching cost aware rounding method for relaxations of mixed-integer optimal control problems, 978-1-7281-1398-2, 7134, 10.1109/CDC40024.2019.9030063
    6. D.B. Work, A.M. Bayen, Convex Formulations of Air Traffic Flow Optimization Problems, 2008, 96, 0018-9219, 2096, 10.1109/JPROC.2008.2006150
    7. Felix Bestehorn, Christoph Hansknecht, Christian Kirches, Paul Manns, Switching Cost Aware Rounding for Relaxations of Mixed-Integer Optimal Control Problems: The 2-D Case, 2022, 6, 2475-1456, 548, 10.1109/LCSYS.2021.3082989
    8. Simone Göttlich, Patrick Schindler, Optimal inflow control of production systems with finite buffers, 2015, 20, 1553-524X, 107, 10.3934/dcdsb.2015.20.107
    9. Khaled A.A.A. Othman, Thomas Meurer, Demand Tracking Control in Manufacturing Systems, 2020, 53, 24058963, 11219, 10.1016/j.ifacol.2020.12.334
    10. Simone Göttlich, Michael Herty, Optimal control for supply network models: Mixed integer programming, 2007, 7, 16177061, 2060051, 10.1002/pamm.200700618
    11. Alfredo Cutolo, Benedetto Piccoli, Luigi Rarità, An Upwind-Euler Scheme for an ODE-PDE Model of Supply Chains, 2011, 33, 1064-8275, 1669, 10.1137/090767479
    12. Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms, 2010, 2010, 1687-5249, 1, 10.1155/2010/982369
    13. Michael N. Jung, Christian Kirches, Sebastian Sager, Susanne Sass, Computational Approaches for Mixed Integer Optimal Control Problems with Indicator Constraints, 2018, 46, 2305-221X, 1023, 10.1007/s10013-018-0313-z
    14. Khaled A.A.A. Othman, Thomas Meurer, Optimal Boundary Control for the Backlog Problem in Production Systems, 2022, 55, 24058963, 511, 10.1016/j.ifacol.2022.09.146
    15. Tanmay Sarkar, A numerical study on a nonlinear conservation law model pertaining to manufacturing system, 2016, 47, 0019-5588, 655, 10.1007/s13226-016-0199-y
    16. Agnes Dittel, Simone Göttlich, Ute Ziegler, Optimal design of capacitated production networks, 2011, 12, 1389-4420, 583, 10.1007/s11081-010-9123-1
    17. A. Fügenschuh, S. Göttlich, M. Herty, C. Kirchner, A. Martin, Efficient reformulation and solution of a nonlinear PDE-controlled flow network model, 2009, 85, 0010-485X, 245, 10.1007/s00607-009-0038-7
    18. A. Fügenschuh, S. Göttlich, M. Herty, A. Klar, A. Martin, A Discrete Optimization Approach to Large Scale Supply Networks Based on Partial Differential Equations, 2008, 30, 1064-8275, 1490, 10.1137/060663799
    19. Oliver Kolb, Simone Göttlich, A continuous buffer allocation model using stochastic processes, 2015, 242, 03772217, 865, 10.1016/j.ejor.2014.10.065
    20. Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains, 2014, 9, 1556-181X, 501, 10.3934/nhm.2014.9.501
    21. Simone Göttlich, Michael Herty, Claus Kirchner, Optimal control for supply network models: adjoint calculus, 2007, 7, 16177061, 2060053, 10.1002/pamm.200700624
    22. Simone Göttlich, Axel Klar, 2013, Chapter 8, 978-3-642-32159-7, 395, 10.1007/978-3-642-32160-3_8
    23. Ingenuin Gasser, Martin Rybicki, Winnifried Wollner, Optimal control of the temperature in a catalytic converter, 2014, 67, 08981221, 1521, 10.1016/j.camwa.2014.02.006
    24. Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann, Evacuation dynamics influenced by spreading hazardous material, 2011, 6, 1556-181X, 443, 10.3934/nhm.2011.6.443
    25. P. Degond, C. Ringhofer, Stochastic Dynamics of Long Supply Chains with Random Breakdowns, 2007, 68, 0036-1399, 59, 10.1137/060674302
    26. S. Göttlich, S. Kühn, J. A. Schwarz, R. Stolletz, Approximations of time-dependent unreliable flow lines with finite buffers, 2016, 83, 1432-2994, 295, 10.1007/s00186-015-0529-6
    27. Simone Göttlich, Oliver Kolb, Sebastian Kühn, Optimization for a special class of traffic flow models: Combinatorial and continuous approaches, 2014, 9, 1556-181X, 315, 10.3934/nhm.2014.9.315
    28. Sebastian Sager, 2012, Chapter 22, 978-1-4614-1926-6, 631, 10.1007/978-1-4614-1927-3_22
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3816) PDF downloads(802) Cited by(4)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog