Loading [Contrib]/a11y/accessibility-menu.js
 

A singular limit for an age structured mutation problem

  • Received: 31 October 2015 Accepted: 10 March 2016 Published: 01 February 2017
  • MSC : Primary: 34E15, 92D25; Secondary: 34E13

  • The spread of a particular trait in a cell population often is modelled by an appropriate system of ordinary differential equations describing how the sizes of subpopulations of the cells with the same genome change in time. On the other hand, it is recognized that cells have their own vital dynamics and mutations, leading to changes in their genome, mostly occurring during the cell division at the end of its life cycle. In this context, the process is described by a system of McKendrick type equations which resembles a network transport problem. In this paper we show that, under an appropriate scaling of the latter, these two descriptions are asymptotically equivalent.

    Citation: Jacek Banasiak, Aleksandra Falkiewicz. A singular limit for an age structured mutation problem[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 17-30. doi: 10.3934/mbe.2017002

    Related Papers:

    [1] Qinyan shen, Jiang wang, Liangying zhao . To investigate the internal association between SARS-CoV-2 infections and cancer through bioinformatics. Mathematical Biosciences and Engineering, 2022, 19(11): 11172-11194. doi: 10.3934/mbe.2022521
    [2] Yue Hu, Xiaoqin Mei, Dong Tang . Long non-coding RNA XIST is down-regulated and correlated to better prognosis in ovarian cancer. Mathematical Biosciences and Engineering, 2020, 17(3): 2070-2081. doi: 10.3934/mbe.2020110
    [3] Yongyin Han, Maolin Liu, Zhixiao Wang . Key protein identification by integrating protein complex information and multi-biological features. Mathematical Biosciences and Engineering, 2023, 20(10): 18191-18206. doi: 10.3934/mbe.2023808
    [4] Li-Sha Pan, Zacharia Ackbarkha, Jing Zeng, Min-Li Huang, Zhen Yang, Hao Liang . Immune marker signature helps to predict survival in uveal melanoma. Mathematical Biosciences and Engineering, 2021, 18(4): 4055-4070. doi: 10.3934/mbe.2021203
    [5] Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
    [6] Yutong Man, Guangming Liu, Kuo Yang, Xuezhong Zhou . SNFM: A semi-supervised NMF algorithm for detecting biological functional modules. Mathematical Biosciences and Engineering, 2019, 16(4): 1933-1948. doi: 10.3934/mbe.2019094
    [7] Babak Khorsand, Abdorreza Savadi, Javad Zahiri, Mahmoud Naghibzadeh . Alpha influenza virus infiltration prediction using virus-human protein-protein interaction network. Mathematical Biosciences and Engineering, 2020, 17(4): 3109-3129. doi: 10.3934/mbe.2020176
    [8] Moxuan Zhang, Quan Zhang, Jilin Bai, Zhiming Zhao, Jian Zhang . Transcriptome analysis revealed CENPF associated with glioma prognosis. Mathematical Biosciences and Engineering, 2021, 18(3): 2077-2096. doi: 10.3934/mbe.2021107
    [9] Jian-Di Li, Gang Chen, Mei Wu, Yu Huang, Wei Tang . Downregulation of CDC14B in 5218 breast cancer patients: A novel prognosticator for triple-negative breast cancer. Mathematical Biosciences and Engineering, 2020, 17(6): 8152-8181. doi: 10.3934/mbe.2020414
    [10] Sufang Wu, Hua He, Jingjing Huang, Shiyao Jiang, Xiyun Deng, Jun Huang, Yuanbing Chen, Yiqun Jiang . FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. Mathematical Biosciences and Engineering, 2022, 19(9): 9295-9320. doi: 10.3934/mbe.2022432
  • The spread of a particular trait in a cell population often is modelled by an appropriate system of ordinary differential equations describing how the sizes of subpopulations of the cells with the same genome change in time. On the other hand, it is recognized that cells have their own vital dynamics and mutations, leading to changes in their genome, mostly occurring during the cell division at the end of its life cycle. In this context, the process is described by a system of McKendrick type equations which resembles a network transport problem. In this paper we show that, under an appropriate scaling of the latter, these two descriptions are asymptotically equivalent.


    [1] [ H. Amann and J. Escher, Analysis II Birkhäuser, Basel 2008.
    [2] [ W. Arendt, Resolvent positive operators, Proc. Lond. Math. Soc., 54 (1987): 321-349.
    [3] [ J. Banasiak,L. Arlotti, null, Positive Perturbations of Semigroups with Applications, Springer Verlag, London, 2006.
    [4] [ J. Banasiak and A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability Appl. Math. Lett. ,45 (2015), 25-30
    [5] [ J. Banasiak, A. Falkiewicz and P. Namayanja, Semigroup approach to diffusion and transport problems on networks Semigroup Forum. [DOI 10.1007/s00233-015-9730-4]
    [6] [ J. Banasiak,A. Falkiewicz,P. Namayanja, Asymptotic state lumping in transport and diffusion problems on networks with applications to population problems, Math. Models Methods Appl. Sci., 26 (2016): 215-247.
    [7] [ J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology Birkhäuser/Springer, Cham, 2014.
    [8] [ J. Banasiak,M. Moszyński, Dynamics of birth-and-death processes with proliferation -stability and chaos, Discrete Contin. Dyn. Syst., 29 (2011): 67-79.
    [9] [ A. Bobrowski, null, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, Cambridge, 2005.
    [10] [ A. Bobrowski, null, Convergence of One-parameter Operator Semigroups. In Models of Mathematical Biology and Elsewhere, Cambridge University Press, Cambridge, 2016.
    [11] [ A. Bobrowski, On Hille-type approximation of degenerate semigroups of operators, Linear Algebra and its Applications, 511 (2016): 31-53.
    [12] [ A. Bobrowski,M. Kimmel, Asymptotic behaviour of an operator exponential related to branching random walk models of DNA repeats, J. Biol. Systems, 7 (1999): 33-43.
    [13] [ B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008): 341-356.
    [14] [ K. J. Engel,R. Nagel, null, One-Parameter Semigroups for Linear Evolution Equations, Springer Verlag, New York, 1999.
    [15] [ M. Kimmel,D. N. Stivers, Time-continuous branching walk models of unstable gene amplification, Bull. Math. Biol., 50 (1994): 337-357.
    [16] [ M. Kimmel,A. Świerniak,A. Polański, Infinite-dimensional model of evolution of drug resistance of cancer cells, J. Math. Systems Estimation Control, 8 (1998): 1-16.
    [17] [ M. Kramar,E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005): 139-162.
    [18] [ J. L. Lebowitz,S. I. Rubinov, A theory for the age and generation time distribution of a microbial population, J. Theor. Biol., 1 (1974): 17-36.
    [19] [ C. D. Meyer, Matrix Analysis and Applied Linear Algebra SIAM, Philadelphia, 2000.
    [20] [ P. Namayanja, Transport on Network Structures Ph. D thesis, UKZN, 2012.
    [21] [ M. Rotenberg, Transport theory for growing cell population, J. Theor. Biol., 103 (1983): 181-199.
    [22] [ A. Świerniak, A. Polański and M. Kimmel, Control problems arising in chemotherapy under evolving drug resistance, Preprints of the 13th World Congress of IFAC 1996, Volume B, 411-416.
    [23] [ H. T. K. Tse, W. McConnell Weaver and D. Di Carlo, Increased asymmetric and multi-daughter cell division in mechanically confined microenvironments PLoS ONE, 7 (2012), e38986.
  • This article has been cited by:

    1. Edward A. Rietman, Jacob G. Scott, Jack A. Tuszynski, Giannoula Lakka Klement, Personalized anticancer therapy selection using molecular landscape topology and thermodynamics, 2017, 8, 1949-2553, 18735, 10.18632/oncotarget.12932
    2. Edward A. Rietman, Sophie Taylor, Hava T. Siegelmann, Marco A. Deriu, Marco Cavaglia, Jack A. Tuszynski, Using the Gibbs Function as a Measure of Human Brain Development Trends from Fetal Stage to Advanced Age, 2020, 21, 1422-0067, 1116, 10.3390/ijms21031116
    3. Elizabeth J. Brant, Edward A. Rietman, Giannoula Lakka Klement, Marco Cavaglia, Jack A. Tuszynski, Xu-jie Zhou, Personalized therapy design for systemic lupus erythematosus based on the analysis of protein-protein interaction networks, 2020, 15, 1932-6203, e0226883, 10.1371/journal.pone.0226883
    4. J. James Frost, Kenneth J. Pienta, Donald S. Coffey, Symmetry and symmetry breaking in cancer: a foundational approach to the cancer problem, 2018, 9, 1949-2553, 11429, 10.18632/oncotarget.22939
    5. Edward A. Rietman, John Platig, Jack A. Tuszynski, Giannoula Lakka Klement, Thermodynamic measures of cancer: Gibbs free energy and entropy of protein–protein interactions, 2016, 42, 0092-0606, 339, 10.1007/s10867-016-9410-y
    6. Edward Rietman, Jack A. Tuszynski, 2018, Chapter 8, 978-3-319-74973-0, 139, 10.1007/978-3-319-74974-7_8
    7. Ellen Kure Fischer, Antonio Drago, A molecular pathway analysis stresses the role of inflammation and oxidative stress towards cognition in schizophrenia, 2017, 124, 0300-9564, 765, 10.1007/s00702-017-1730-y
    8. Chang Yu, Edward A. Rietman, Hava T. Siegelmann, Marco Cavaglia, Jack A. Tuszynski, Application of Thermodynamics and Protein–Protein Interaction Network Topology for Discovery of Potential New Treatments for Temporal Lobe Epilepsy, 2021, 11, 2076-3417, 8059, 10.3390/app11178059
    9. Nicolas Carels, Domenico Sgariglia, Marcos Guilherme Vieira Junior, Carlyle Ribeiro Lima, Flávia Raquel Gonçalves Carneiro, Gilberto Ferreira da Silva, Fabricio Alves Barbosa da Silva, Rafaela Scardini, Jack Adam Tuszynski, Cecilia Vianna de Andrade, Ana Carolina Monteiro, Marcel Guimarães Martins, Talita Goulart da Silva, Helen Ferraz, Priscilla Vanessa Finotelli, Tiago Albertini Balbino, José Carlos Pinto, A Strategy Utilizing Protein–Protein Interaction Hubs for the Treatment of Cancer Diseases, 2023, 24, 1422-0067, 16098, 10.3390/ijms242216098
    10. Giulia Pozzati, Jinrui Zhou, Hananel Hazan, Giannoula Lakka Klement, Hava T. Siegelmann, Jack A. Tuszynski, Edward A. Rietman, A Systems Biology Analysis of Chronic Lymphocytic Leukemia, 2024, 4, 2673-7523, 163, 10.3390/onco4030013
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4311) PDF downloads(608) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog