Citation: Cameron Browne. Immune response in virus model structured by cell infection-age[J]. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
[1] | Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262 |
[2] | Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743 |
[3] | Zhongcai Zhu, Xiaomei Feng, Xue He, Hongpeng Guo . Mirrored dynamics of a wild mosquito population suppression model with Ricker-type survival probability and time delay. Mathematical Biosciences and Engineering, 2024, 21(2): 1884-1898. doi: 10.3934/mbe.2024083 |
[4] | Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85 |
[5] | Changyong Dai, Haihong Liu, Fang Yan . The role of time delays in P53 gene regulatory network stimulated by growth factor. Mathematical Biosciences and Engineering, 2020, 17(4): 3794-3835. doi: 10.3934/mbe.2020213 |
[6] | Gonzalo Galiano, Julián Velasco . Finite element approximation of a population spatial adaptation model. Mathematical Biosciences and Engineering, 2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637 |
[7] | Feng Rao, Carlos Castillo-Chavez, Yun Kang . Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences and Engineering, 2018, 15(6): 1401-1423. doi: 10.3934/mbe.2018064 |
[8] | Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001 |
[9] | Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036 |
[10] | Peter Hinow, Pierre Magal, Shigui Ruan . Preface. Mathematical Biosciences and Engineering, 2015, 12(4): i-iv. doi: 10.3934/mbe.2015.12.4i |
[1] | Clinical Immunology, 143 (2012), 99-115. |
[2] | PLoS One, 6 (2011), e16468-e16468. |
[3] | Journal of Virology, 83 (2009), 7659-7667. |
[4] | Journal of Virology, 87 (2013), 8726-8734. |
[5] | Mathematical Biosciences, 183 (2003), 63-91. |
[6] | Nonlinear Analysis: Real World Applications, 22 (2015), 354-372. |
[7] | Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999-2017. |
[8] | Retrovirology, 10 (2013), 1-12. |
[9] | Journal of Mathematical Analysis and Applications, 385 (2012), 709-720. |
[10] | Blood, 120 (2012), 100-111. |
[11] | Mathematical Biosciences, 165 (2000), 27-39. |
[12] | PLoS Comput. Biol., 8 (2012), e1002593, 5pp. |
[13] | SIAM Journal on Applied Mathematics, 73 (2013), 572-593. |
[14] | Journal of Mathematical Analysis and applications, 341 (2008), 501-518. |
[15] | Journal of Theoretical Biology, 229 (2004), 281-288. |
[16] | SIAM Journal on Mathematical Analysis, 20 (1989), 388-395. |
[17] | SIAM Journal on Applied Mathematics, 72 (2012), 25-38. |
[18] | The Journal of Experimental Medicine, 204 (2007), 2187-2198. |
[19] | Journal of Virology, 87 (2013), 2628-2638. |
[20] | Mathematical Biosciences and Engineering: MBE, 11 (2014), 1091-1113. |
[21] | Bulletin of Mathematical Biology, 72 (2010), 1492-1505. |
[22] | Applicable Analysis, 89 (2010), 1109-1140. |
[23] | Electronic Journal of Differential Equations, 2001 (2001), 1-35. |
[24] | SIAM Journal on Mathematical Analysis, 37 (2005), 251-275. |
[25] | Math. Biosci. Eng., 1 (2004), 267-288. |
[26] | Mathematical Biosciences, 179 (2002), 73-94. |
[27] | Science, 272 (1996), 74-79. |
[28] | Journal of Theoretical Biology, 175 (1995), 325-353. |
[29] | Journal of Virology, 84 (2010), 10543-10557. |
[30] | SIAM Review, 41 (1999), 3-44. |
[31] | Science, 271 (1996), 1582-1586. |
[32] | SIAM Journal on Applied Mathematics, 67 (2007), 731-756. |
[33] | Journal of Theoretical Biology, 247 (2007), 804-818. |
[34] | The Journal of Immunology, 178 (2007), 2746-2754. |
[35] | SIAM Journal on Applied Mathematics, 73 (2013), 1280-1302. |
[36] | Springer Science & Business Media, 2011. |
[37] | SIAM Journal on Applied Mathematics, 63 (2003), 1313-1327. |
[38] | Journal of Mathematical Analysis and Applications, 373 (2011), 345-355. |
[39] | Journal of Mathematical Analysis and Applications, 152 (1990), 416-447. |
[40] | Advances in Mathematical Population Dynamics-Molecules, Cells and Man., Volume 6, Worlds Scientific, pages 691-711, 1997. |
[41] | Differential and Integral Equations, 3 (1990), 1035-1066. |
[42] | Nature Reviews Immunology, 13 (2013), 487-498. |
[43] | Physica D: Nonlinear Phenomena, 226 (2007), 197-208. |
[44] | Journal of Mathematical Biology, 67 (2013), 901-934. |
[45] | CRC Press, 1985. |
[46] | Ecology Letters, 9 (2006), 694-705. |
[47] | Journal of Applied Mathematics, (2013), Art. ID 419593, 12 pp. |
1. | Yu Jin, Xiao-Qiang Zhao, Spatial Dynamics of a Nonlocal Periodic Reaction-Diffusion Model with Stage Structure, 2009, 40, 0036-1410, 2496, 10.1137/070709761 | |
2. | Guanying Sun, Dong Liang, Wenqia Wang, Numerical analysis to discontinuous Galerkin methods for the age structured population model of marine invertebrates, 2009, 25, 0749159X, 470, 10.1002/num.20355 | |
3. | Peter Y.H. Pang, Yifu Wang, Time periodic solutions of the diffusive Nicholson blowflies equation with delay, 2015, 22, 14681218, 44, 10.1016/j.nonrwa.2014.07.014 | |
4. | Majid Bani-Yaghoub, David E. Amundsen, Oscillatory traveling waves for a population diffusion model with two age classes and nonlocality induced by maturation delay, 2015, 34, 0101-8205, 309, 10.1007/s40314-014-0118-y | |
5. | Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang, Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice, 2012, 13, 14681218, 1873, 10.1016/j.nonrwa.2011.12.016 | |
6. | Majid Bani-Yaghoub, Numerical Simulations of Traveling and Stationary Wave Solutions Arising from Reaction-Diffusion Population Models with Delay and Nonlocality, 2018, 4, 2349-5103, 10.1007/s40819-017-0441-2 | |
7. | Shangjiang Guo, Patterns in a nonlocal time-delayed reaction–diffusion equation, 2018, 69, 0044-2275, 10.1007/s00033-017-0904-7 | |
8. | Dong Liang, Guanying Sun, Wenqia Wang, Second-order characteristic schemes in time and age for a nonlinear age-structured population model, 2011, 235, 03770427, 3841, 10.1016/j.cam.2011.01.031 | |
9. | Majid Bani-Yaghoub, Guangming Yao, Hristo Voulov, Existence and stability of stationary waves of a population model with strong Allee effect, 2016, 307, 03770427, 385, 10.1016/j.cam.2015.11.021 | |
10. | Taishan Yi, Xingfu Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case, 2008, 245, 00220396, 3376, 10.1016/j.jde.2008.03.007 | |
11. | Majid Bani-Yaghoub, Guangming Yao, Masami Fujiwara, David E. Amundsen, Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model, 2015, 21, 1476945X, 14, 10.1016/j.ecocom.2014.10.007 | |
12. | E. Ya. Frisman, O. L. Zhdanova, M. P. Kulakov, G. P. Neverova, O. L. Revutskaya, Mathematical Modeling of Population Dynamics Based on Recurrent Equations: Results and Prospects. Part II, 2021, 48, 1062-3590, 239, 10.1134/S1062359021030055 | |
13. | Matvey Kulakov, Efim Frisman, Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions, 2023, 11, 2227-7390, 2072, 10.3390/math11092072 | |
14. | Khalaf M. Alanazi, Modeling and Simulating an Epidemic in Two Dimensions with an Application Regarding COVID-19, 2024, 12, 2079-3197, 34, 10.3390/computation12020034 |