A toxin-mediated size-structured population model: Finite difference approximation and well-posedness

  • Received: 01 September 2015 Accepted: 29 June 2018 Published: 01 May 2016
  • MSC : 35L04, 92F99, 65Z99.

  • The question of the effects of environmental toxins on ecological communities is of great interest from both environmental and conservational points of view. Mathematical models have been applied increasingly to predict the effects of toxins on a variety of ecological processes. Motivated by the fact that individuals with different sizes may have different sensitivities to toxins, we develop a toxin-mediated size-structured model which is given by a system of first order fully nonlinear partial differential equations (PDEs). It is very possible that this work represents the first derivation of a PDE model in the area of ecotoxicology. To solve the model, an explicit finite difference approximation to this PDE system is developed. Existence-uniqueness of the weak solution to the model is established and convergence of the finite difference approximation to this unique solution is proved. Numerical examples are provided by numerically solving the PDE model using the finite difference scheme.

    Citation: Qihua Huang, Hao Wang. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness[J]. Mathematical Biosciences and Engineering, 2016, 13(4): 697-722. doi: 10.3934/mbe.2016015

    Related Papers:

    [1] Qinyan shen, Jiang wang, Liangying zhao . To investigate the internal association between SARS-CoV-2 infections and cancer through bioinformatics. Mathematical Biosciences and Engineering, 2022, 19(11): 11172-11194. doi: 10.3934/mbe.2022521
    [2] Yue Hu, Xiaoqin Mei, Dong Tang . Long non-coding RNA XIST is down-regulated and correlated to better prognosis in ovarian cancer. Mathematical Biosciences and Engineering, 2020, 17(3): 2070-2081. doi: 10.3934/mbe.2020110
    [3] Yongyin Han, Maolin Liu, Zhixiao Wang . Key protein identification by integrating protein complex information and multi-biological features. Mathematical Biosciences and Engineering, 2023, 20(10): 18191-18206. doi: 10.3934/mbe.2023808
    [4] Li-Sha Pan, Zacharia Ackbarkha, Jing Zeng, Min-Li Huang, Zhen Yang, Hao Liang . Immune marker signature helps to predict survival in uveal melanoma. Mathematical Biosciences and Engineering, 2021, 18(4): 4055-4070. doi: 10.3934/mbe.2021203
    [5] Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
    [6] Yutong Man, Guangming Liu, Kuo Yang, Xuezhong Zhou . SNFM: A semi-supervised NMF algorithm for detecting biological functional modules. Mathematical Biosciences and Engineering, 2019, 16(4): 1933-1948. doi: 10.3934/mbe.2019094
    [7] Babak Khorsand, Abdorreza Savadi, Javad Zahiri, Mahmoud Naghibzadeh . Alpha influenza virus infiltration prediction using virus-human protein-protein interaction network. Mathematical Biosciences and Engineering, 2020, 17(4): 3109-3129. doi: 10.3934/mbe.2020176
    [8] Moxuan Zhang, Quan Zhang, Jilin Bai, Zhiming Zhao, Jian Zhang . Transcriptome analysis revealed CENPF associated with glioma prognosis. Mathematical Biosciences and Engineering, 2021, 18(3): 2077-2096. doi: 10.3934/mbe.2021107
    [9] Jian-Di Li, Gang Chen, Mei Wu, Yu Huang, Wei Tang . Downregulation of CDC14B in 5218 breast cancer patients: A novel prognosticator for triple-negative breast cancer. Mathematical Biosciences and Engineering, 2020, 17(6): 8152-8181. doi: 10.3934/mbe.2020414
    [10] Sufang Wu, Hua He, Jingjing Huang, Shiyao Jiang, Xiyun Deng, Jun Huang, Yuanbing Chen, Yiqun Jiang . FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. Mathematical Biosciences and Engineering, 2022, 19(9): 9295-9320. doi: 10.3934/mbe.2022432
  • The question of the effects of environmental toxins on ecological communities is of great interest from both environmental and conservational points of view. Mathematical models have been applied increasingly to predict the effects of toxins on a variety of ecological processes. Motivated by the fact that individuals with different sizes may have different sensitivities to toxins, we develop a toxin-mediated size-structured model which is given by a system of first order fully nonlinear partial differential equations (PDEs). It is very possible that this work represents the first derivation of a PDE model in the area of ecotoxicology. To solve the model, an explicit finite difference approximation to this PDE system is developed. Existence-uniqueness of the weak solution to the model is established and convergence of the finite difference approximation to this unique solution is proved. Numerical examples are provided by numerically solving the PDE model using the finite difference scheme.


    [1] Nonlinear Analysis, 50 (2002), 727-748.
    [2] Applied Mathematics and Computation, 108 (2000), 103-113.
    [3] Quarterly of Applied Mathematics, 57 (1999), 261-267.
    [4] Journal of Biological Dynamics, 5 (2011), 64-83.
    [5] Nonlinear Analysis and Optimization, 513 (2010), 1-23.
    [6] Numerical Functional Analysis and Optimization, 18 (1997), 865-884.
    [7] Environmental Toxicology and Chemistry, 23 (2004), 2343-2355.
    [8] Journal of Mathematical Biology, 33 (1995), 335-364.
    [9] Mathematical of Computation, 34 (1980), 1-21.
    [10] Human and Ecological Risk Assessment, 9 (2003), 907-938.
    [11] Journal of Mathematical Biology, 30 (1991), 15-30.
    [12] Integrated Environmental Assessment and Management, 6 (2010), 338-360.
    [13] Journal of Mathematical Biology, 18 (1983), 25-37.
    [14] Ecological Modelling, 18 (1983), 291-304.
    [15] Ecological Modelling, 35 (1987), 249-273.
    [16] Journal of Theoretical Biology, 334 (2013), 71-79.
    [17] Nonlinear Analysis: Hybrid System, 18 (2015), 100-116.
    [18] Chaos, Solitions and Fractals, 45 (2012), 1541-1550.
    [19] Journal of Mathematical Biology, 30 (1991), 49-61.
    [20] Mathematical Biosciences, 101 (1990), 75-97.
    [21] Environmental Pollution, 110 (2000), 375-391.
    [22] Lecture Notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986.
    [23] Journal of Mathematical Analysis and Applications, 252 (2000), 519-531.
    [24] Lewis Publishers, Boca Raton, FL, USA, 2001.
    [25] Human and Ecological Risk Assessment, 9 (2003), 939-972.
    [26] SIAM Journal on Numerical Analysis, 45 (2007), 352-370.
    [27] Springer, New York, 1994.
    [28] Princeton Series in Theoretical and Computational Biology, 2003.
    [29] Mathematical Biosciences, 133 (1996), 139-163.
    [30] Bulletin of Mathematical Biology, 77 (2015), 1285-1326.
    [31] IN: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg, Manitoba. 6 pp. [Last accessed November 21, 2014], Available from: http://ceqg-rcqe.ccme.ca/download/en/191.
    [32] Available from: https://www.gpo.gov/fdsys/granule/CFR-2012-title40-vol30/CFR-2012-title40-vol30-part423-appA/content-detail.html.
  • This article has been cited by:

    1. Edward A. Rietman, Jacob G. Scott, Jack A. Tuszynski, Giannoula Lakka Klement, Personalized anticancer therapy selection using molecular landscape topology and thermodynamics, 2017, 8, 1949-2553, 18735, 10.18632/oncotarget.12932
    2. Edward A. Rietman, Sophie Taylor, Hava T. Siegelmann, Marco A. Deriu, Marco Cavaglia, Jack A. Tuszynski, Using the Gibbs Function as a Measure of Human Brain Development Trends from Fetal Stage to Advanced Age, 2020, 21, 1422-0067, 1116, 10.3390/ijms21031116
    3. Elizabeth J. Brant, Edward A. Rietman, Giannoula Lakka Klement, Marco Cavaglia, Jack A. Tuszynski, Xu-jie Zhou, Personalized therapy design for systemic lupus erythematosus based on the analysis of protein-protein interaction networks, 2020, 15, 1932-6203, e0226883, 10.1371/journal.pone.0226883
    4. J. James Frost, Kenneth J. Pienta, Donald S. Coffey, Symmetry and symmetry breaking in cancer: a foundational approach to the cancer problem, 2018, 9, 1949-2553, 11429, 10.18632/oncotarget.22939
    5. Edward A. Rietman, John Platig, Jack A. Tuszynski, Giannoula Lakka Klement, Thermodynamic measures of cancer: Gibbs free energy and entropy of protein–protein interactions, 2016, 42, 0092-0606, 339, 10.1007/s10867-016-9410-y
    6. Edward Rietman, Jack A. Tuszynski, 2018, Chapter 8, 978-3-319-74973-0, 139, 10.1007/978-3-319-74974-7_8
    7. Ellen Kure Fischer, Antonio Drago, A molecular pathway analysis stresses the role of inflammation and oxidative stress towards cognition in schizophrenia, 2017, 124, 0300-9564, 765, 10.1007/s00702-017-1730-y
    8. Chang Yu, Edward A. Rietman, Hava T. Siegelmann, Marco Cavaglia, Jack A. Tuszynski, Application of Thermodynamics and Protein–Protein Interaction Network Topology for Discovery of Potential New Treatments for Temporal Lobe Epilepsy, 2021, 11, 2076-3417, 8059, 10.3390/app11178059
    9. Nicolas Carels, Domenico Sgariglia, Marcos Guilherme Vieira Junior, Carlyle Ribeiro Lima, Flávia Raquel Gonçalves Carneiro, Gilberto Ferreira da Silva, Fabricio Alves Barbosa da Silva, Rafaela Scardini, Jack Adam Tuszynski, Cecilia Vianna de Andrade, Ana Carolina Monteiro, Marcel Guimarães Martins, Talita Goulart da Silva, Helen Ferraz, Priscilla Vanessa Finotelli, Tiago Albertini Balbino, José Carlos Pinto, A Strategy Utilizing Protein–Protein Interaction Hubs for the Treatment of Cancer Diseases, 2023, 24, 1422-0067, 16098, 10.3390/ijms242216098
    10. Giulia Pozzati, Jinrui Zhou, Hananel Hazan, Giannoula Lakka Klement, Hava T. Siegelmann, Jack A. Tuszynski, Edward A. Rietman, A Systems Biology Analysis of Chronic Lymphocytic Leukemia, 2024, 4, 2673-7523, 163, 10.3390/onco4030013
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2566) PDF downloads(522) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog