Mathematical Biosciences and Engineering, 2016, 13(1): 101-118. doi: 10.3934/mbe.2016.13.101.

Primary: 92D25, 92D40; Secondary: 34D20, 34D23, 93D30.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

The global stability of coexisting equilibria for three models of mutualism

1. Department of Mathematics, Technical University of Iaşi, Bd. Copou 11, 700506 Iaşi
2. Department of Financial Mathematics, Jiangsu University, ZhenJiang, Jiangsu, 212013

We analyze the dynamics of three models of mutualism, establishing the global stability of coexisting equilibria by means of Lyapunov's second method. This further establishes the usefulness of certain Lyapunov functionals of an abstract nature introduced in an earlier paper. As a consequence, it is seen that the use of higher order self-limiting terms cures the shortcomings of Lotka-Volterra mutualisms, preventing unbounded growth and promoting global stability.
  Figure/Table
  Supplementary
  Article Metrics

Keywords monotonicity properties.; global stability; Mutualistic interaction; Lyapunov functional; invariance principle

Citation: Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism. Mathematical Biosciences and Engineering, 2016, 13(1): 101-118. doi: 10.3934/mbe.2016.13.101

References

  • 1. Comput. Math. Appl., 67 (2014), 2127-2143.
  • 2. in Evolutionary Conservation Biology (eds. R. Ferrière, U. Dieckmann and D. Couvet), Cambridge University Press, (2004), 305-326.
  • 3. Princeton University Press, Princeton, 2010.
  • 4. SIAM J. Appl. Math., 67 (2006), 337-353.
  • 5. Nonlinear Anal.: Real World Appl., 11 (2010), 3653-3665.
  • 6. Appl. Math. Comput., 219 (2013), 8496-8507.
  • 7. Appl. Math. Comput., 226 (2014), 754-764.
  • 8. Am. Nat., 113 (1979), 261-275.
  • 9. Bull. Math. Biol., 68 (2006), 1851-1872.
  • 10. J. Math. Biol., 8 (1979), 159-171.
  • 11. in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, J. Wu and Y. Zhou), Series in Contemporary Applied Mathematics (CAM), Higher Education Press, 11 (2009), 216-236.
  • 12. in Population Dynamics, Vol 3 of Encyclopedia of Ecology (eds. S.E. Jorgensen and B.D. Fath), Elsevier, (2008), 2485-2491.
  • 13. Ecology, 91 (2010), 1286-1295.
  • 14. Math. Med. Biol., 21 (2004), 75-83.
  • 15. Bull. Math. Biol., 68 (2006), 615-626.
  • 16. Math. Med. Biol., 26 (2009), 309-321.
  • 17. in Theoretical Ecology: Principles and Application (ed. R. M. May), Saunders, (1976), 78-104.
  • 18. Math. Biosci. Eng., 6 (2009), 603-610.
  • 19. Math. Biosci. Eng., 10 (2013), 369-378.
  • 20. Ecology, 88 (2007), 3004-3011.
  • 21. Forest Science, 19 (1973), 2-22.
  • 22. J. Exp. Bot., 10 (1959), 290-300.
  • 23. J. Theor. Biol., 74 (1978), 549-558.
  • 24. Appl. Math. Comput., 219 (2012), 2493-2497.
  • 25. Abstraction & Application, 9 (2013), 50-61.
  • 26. Biomatemática, 23 (2013), 139-146.
  • 27. Am. Nat., 124 (1984), 843-862.

 

This article has been cited by

  • 1. Rusliza Ahmad, Global stability of two-species mutualism model with proportional harvesting, International Journal of ADVANCED AND APPLIED SCIENCES, 2017, 4, 7, 74, 10.21833/ijaas.2017.07.011
  • 2. Gabriel Dimitriu, Răzvan Ştefănescu, Ionel M. Navon, Comparative numerical analysis using reduced-order modeling strategies for nonlinear large-scale systems, Journal of Computational and Applied Mathematics, 2017, 310, 32, 10.1016/j.cam.2016.07.002
  • 3. Paul Georgescu, Daniel Maxin, Hong Zhang, Global stability results for models of commensalism, International Journal of Biomathematics, 2017, 10, 03, 1750037, 10.1142/S1793524517500371
  • 4. D. Maxin, P. Georgescu, L. Sega, L. Berec, Global stability of the coexistence equilibrium for a general class of models of facultative mutualism, Journal of Biological Dynamics, 2017, 11, 1, 339, 10.1080/17513758.2017.1343871
  • 5. P. Georgescu, D. Maxin, L. Sega, H. Zhang, , , 2018, 10.1016/bs.host.2018.09.001
  • 6. Saikat Batabyal, Debaldev Jana, Jingjing Lyu, Rana D. Parshad, Explosive predator and mutualistic preys: A comparative study, Physica A: Statistical Mechanics and its Applications, 2019, 10.1016/j.physa.2019.123348

Reader Comments

your name: *   your email: *  

Copyright Info: 2016, Paul Georgescu, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved