Loading [Contrib]/a11y/accessibility-menu.js

Analysis of SI models with multiple interacting populations using subpopulations

  • Received: 01 January 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 92D30; Secondary: 37C75.

  • Computing endemic equilibria and basic reproductive numbers for systems of differential equations describing epidemiological systems with multiple connections between subpopulations is often algebraically intractable. We present an alternative method which deconstructs the larger system into smaller subsystems and captures theinteractions between the smaller systems as external forces using an approximate model. We bound the basic reproductive numbers of the full system in terms of the basic reproductive numbers of the smaller systems and use the alternate model to provide approximations for the endemic equilibrium. In addition to creating algebraically tractable reproductive numbers and endemic equilibria, we can demonstrate the influence of the interactions between subpopulations on the basic reproductive number of the full system. The focus of this paper is to provide analytical tools to help guide public health decisions with limited intervention resources.

    Citation: Evelyn K. Thomas, Katharine F. Gurski, Kathleen A. Hoffman. Analysis of SI models with multiple interacting populations using subpopulations[J]. Mathematical Biosciences and Engineering, 2015, 12(1): 135-161. doi: 10.3934/mbe.2015.12.135

    Related Papers:

    [1] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [2] Andrew Omame, Sarafa A. Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L. Bragazzi, Xiaoying Wang, Woldegebriel A. Woldegerima, Jude D. Kong . Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach. Mathematical Biosciences and Engineering, 2025, 22(2): 225-259. doi: 10.3934/mbe.2025010
    [3] Jianquan Li, Zhien Ma, Fred Brauer . Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences and Engineering, 2007, 4(4): 699-710. doi: 10.3934/mbe.2007.4.699
    [4] Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295
    [5] Ali Gharouni, Lin Wang . Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences and Engineering, 2016, 13(5): 969-980. doi: 10.3934/mbe.2016025
    [6] Aditya S. Khanna, Dobromir T. Dimitrov, Steven M. Goodreau . What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical Biosciences and Engineering, 2014, 11(5): 1065-1090. doi: 10.3934/mbe.2014.11.1065
    [7] Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919
    [8] Muntaser Safan, Bayan Humadi . An SIS sex-structured influenza A model with positive case fatality in an open population with varying size. Mathematical Biosciences and Engineering, 2024, 21(8): 6975-7011. doi: 10.3934/mbe.2024306
    [9] Wenzhang Huang, Maoan Han, Kaiyu Liu . Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences and Engineering, 2010, 7(1): 51-66. doi: 10.3934/mbe.2010.7.51
    [10] Ruixia Zhang, Shuping Li . Analysis of a two-patch SIS model with saturating contact rate and one- directing population dispersal. Mathematical Biosciences and Engineering, 2022, 19(11): 11217-11231. doi: 10.3934/mbe.2022523
  • Computing endemic equilibria and basic reproductive numbers for systems of differential equations describing epidemiological systems with multiple connections between subpopulations is often algebraically intractable. We present an alternative method which deconstructs the larger system into smaller subsystems and captures theinteractions between the smaller systems as external forces using an approximate model. We bound the basic reproductive numbers of the full system in terms of the basic reproductive numbers of the smaller systems and use the alternate model to provide approximations for the endemic equilibrium. In addition to creating algebraically tractable reproductive numbers and endemic equilibria, we can demonstrate the influence of the interactions between subpopulations on the basic reproductive number of the full system. The focus of this paper is to provide analytical tools to help guide public health decisions with limited intervention resources.


    [1] Oxford Science Publications, 1991.
    [2] Lecture Notes in Biomathematics, 86 (1990), 14-20.
    [3] in Sea Fisheries: Their Investigation in the United Kingdom (ed. M. Graham), Edward Arnold, London, (1956), 372-441.
    [4] HIV Med., 3 (2002), 195-199.
    [5] $2^{nd}$ edition, Springer, New York, 2012.
    [6] Mathematical Biosciences and Engineering, 5 (2008), 713-727.
    [7] in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, The IMA Volumes in Mathematics and its Applications, 125 (2002), 229-250.
    [8] Lecture Notes in Biomathematics, 83, 1989.
    [9] Journal of Theoretical Biology, 263 (2010), 169-178.
    [10] BMC Infect Dis., 1 (2001), p1.
    [11] PLoS Med., 3 (2006), e42.
    [12] Am. J. Med., 113 (2002), 91-98.
    [13] Mathematical Biosciences, 16 (1973), 75-101.
    [14] J Acquir. Immune Dec. Syndr., 41 (2006), 194-200.
    [15] J. Animal Ecology, 11 (1942), 215-244.
    [16] PLoS Med., 3 (2005), e7.
    [17] Trans. Amer. Math. Soc., 104 (1962), 154-178.
    [18] Lecture Notes in Biomathematics, 56. Springer-Verlag, Berlin, 1984.
    [19] SIAM, 1975.
    [20] Mathematical Biosciences, 155 (1999), 77-109.
    [21] Math. Biosci., 181 (2003), 17-54.
    [22] Journal of Theoretical Biology, 208 (2001), 227-249.
    [23] Mathematical Biosciences, 90 (1988), 415-473.
    [24] Proc. Roy. Soc. London B Biol. Sci., 115 (1927), 700-721.
    [25] Proc. Roy. Soc. London B Biol. Sci., 138 (1932), 55-83.
    [26] Proc. Roy. Soc. London B Biol. Sci., 141 (1933), 94-112.
    [27] Mathematical Biosciences, 28 (1976), 221-236.
    [28] in IMA Volumes in Mathematics and its Applications (eds. C. Castillo-Ch\'avez et al.), 126 (2002), 295-311.
    [29] J. Phys. Chem., 14 (1910), 271-274.
    [30] Proc. Natl. Acad. Sci. U.S., 6 (1920), 410-415.
    [31] Williams and Wilkins, 1925.
    [32] Theoretical Population Biology, 70 (2006), 174-182.
    [33] Computational and Mathematical Methods in Medicine, 11 (2010), 201-222.
    [34] BMJ, 343 (2011), d6016.
    [35] Nature, 261 (1976), 459-467.
    [36] Doubleday, 1976.
    [37] AIDS, 16 (2002), 1663-1671.
    [38] Lancet, 362 (2003), 22-29.
    [39] Mathematical and Computer Modelling, 49 (2009), 1869-1882.
    [40] Bulletin of Mathematical Biology, 69 (2007), 2061-2092.
    [41] $3^rd$ edition, Springer, 2002.
    [42] AIDS, 26 (2012), 335-343.
    [43] Curr. Opin. Infect. Dis., 26 (2013), 17-25.
    [44] SIAM Journal of Applied Mathematics, 65 (2005), 964-982.
    [45] Bulletin of the Torrey Botanical Club, 82 (1955), 400-401.
    [46] in On Global Univalence Theorems, Lecture Notes in Mathematics, 977 (1983), 59-467.
    [47] N. Engl. J. Med., 338 (1998), 853-860.
    [48] Differential Equations and Dynamical Systems: International Journal for Theory, Real World Modelling and Simulations, 19 (2011), 283-302.
    [49] Mathematical Population Studies, 8 (2000), 205-229.
    [50] $5^{th}$ edition, Oxford University Press, 2008.
    [51] J. Fisher. Res. Board Can., 5 (1954), 559-623.
    [52] $2^{nd}$ edition, E.P Dutton and Co., 1910.
    [53] J. Hepatol., 42 (2005), 799-805.
    [54] Bulletin of the Inter-American Tropical Tuna Commission, 1 (1954), 27-56.
    [55] Lancet, 372 (2008), 293-299.
    [56] Princeton Series in Theoretical and Computational Biology, 2003.
    [57] AIDS, 24 (2010), 1527-1535.
    [58] Journal of Mathematical Biology, 32 (1994), 233-249.
    [59] Mem. R. Acad. Naz. dei Lincei, 4 (1926), 31-113.
    [60] J. Cons. int. Explor. Mer., 3 (1928), 3-51.
    [61] SIAM J. Appl. Math, 68 (2008), 1495-1502.
  • This article has been cited by:

    1. K.F. Gurski, K.A. Hoffman, Influence of concurrency, partner choice, and viral suppression on racial disparity in the prevalence of HIV infected women, 2016, 282, 00255564, 91, 10.1016/j.mbs.2016.09.009
    2. E.K. Thomas, K.A. Hoffman, K.F. Gurski, 2015, Modeling HIV: Determining the factors affecting the racial disparity in the prevalence of infected women, 1-60133-018-9, 569, 10.3934/proc.2015.0569
    3. Juping Zhang, Linlin Wang, Zhen Jin, Global stability for age-infection-structured human immunodeficiency virus model with heterogeneous transmission, 2024, 24680427, 10.1016/j.idm.2024.01.008
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3119) PDF downloads(559) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog