Effects of elongation delay in transcription dynamics

  • Received: 01 June 2014 Accepted: 29 June 2018 Published: 01 September 2014
  • MSC : 92C45, 34F05.

  • In the transcription process, elongation delay is induced by the movement of RNA polymerases (RNAP) along the DNA sequence, and can result in changes in the transcription dynamics. This paper studies the transcription dynamics that involved the elongation delay and effects of cell division and DNA replication. The stochastic process of gene expression is modeled with delay chemical master equation with periodic coefficients, and is studied numerically through the stochastic simulation algorithm with delay. We show that the average transcription level approaches to a periodic dynamics over cell cycles at homeostasis, and the elongation delay can reduce the transcription level and increase the transcription noise. Moreover, the transcription elongation can induce bimodal distribution of mRNA levels that can be measured by the techniques of flow cytometry.

    Citation: Xuan Zhang, Huiqin Jin, Zhuoqin Yang, Jinzhi Lei. Effects of elongation delay in transcription dynamics[J]. Mathematical Biosciences and Engineering, 2014, 11(6): 1431-1448. doi: 10.3934/mbe.2014.11.1431

    Related Papers:

  • In the transcription process, elongation delay is induced by the movement of RNA polymerases (RNAP) along the DNA sequence, and can result in changes in the transcription dynamics. This paper studies the transcription dynamics that involved the elongation delay and effects of cell division and DNA replication. The stochastic process of gene expression is modeled with delay chemical master equation with periodic coefficients, and is studied numerically through the stochastic simulation algorithm with delay. We show that the average transcription level approaches to a periodic dynamics over cell cycles at homeostasis, and the elongation delay can reduce the transcription level and increase the transcription noise. Moreover, the transcription elongation can induce bimodal distribution of mRNA levels that can be measured by the techniques of flow cytometry.


    加载中
    [1] Nat. Genet., 40 (2008), 71-475.
    [2] Chapman & Hall/RCR, New York, 2006.
    [3] Cell, 109 (2002), 193-203.
    [4] Mol. Microbiol., 26 (1997), 845-851.
    [5] Nature, 422 (2003), 633-637.
    [6] Proc. Natl. Acad. Sci. USA, 102 (2005), 14593-14598.
    [7] Nature, 440 (2006), 358-362.
    [8] Science, 322 (2008), 442-446.
    [9] Proc. Natl. Acad. Sci. USA, 95 (1998), 15641-15646.
    [10] Nat. Struct. Mol. Biol., 14 (2007), 796-806.
    [11] Proc. Natl. Acad. Sci. USA, 106 (2009), 2583-2588.
    [12] Biochim. Biophys. Acta., 1577 (2002), 208-223.
    [13] Science, 297 (2002), 1183-1186.
    [14] Science, 280 (1998), 585-590.
    [15] Phys. Rev. Lett., 97 (2006), 168302.
    [16] Cell, 123 (2005), 1025-1036.
    [17] Science, 324 (2009), 927-928.
    [18] J. Theor. Biol., 192 (1998), 167-187.
    [19] Cell, 125 (2006), 1083-1094.
    [20] Nat. Rev. Genet., 6 (2005), 451-464.
    [21] Curr. Opin. Genet. Dev., 14 (2004), 440-445.
    [22] Mol. Cell, 18 (2005), 97-108.
    [23] J. Theor. Biol., 256 (2009), 485-492.
    [24] Nonlinearity, 22 (2009), 2845-2859.
    [25] Science, 336 (2012), 183-187.
    [26] Mol. Cell. Biol., 13 (1993), 3456-3463.
    [27] Cell, 108 (2002), 439-451.
    [28] Nat. Genet., 31 (2002), 69-73.
    [29] Nature, 427 (2004), 415-418.
    [30] Phys. Life Rev., 2 (2005), 157-175.
    [31] Science, 319 (2008), 339-343.
    [32] Science, 328 (2010), 504-508.
    [33] Cell, 108 (2002), 501-572.
    [34] PLoS Comp. Biol., 6 (2010), e1000704.
    [35] J. Biol. Chem., 276 (2001), 42601-42609.
    [36] Math. Biosci., 223 (2010), 1-11.
    [37] J. Comput. Biol., 16 (2009), 539-553.
    [38] Phys. Biol., 3 (2006), 274-284.
    [39] Mol. Syst. Biol., 4 (2008), 196.
    [40] Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261.
    [41] Biophy. J., 87 (2004), 3945-3953.
    [42] Nature, 456 (2008), 516-519.
    [43] Nature, 440 (2006), 545-550.
    [44] Proc. Natl. Acad. Sci. USA, 99 (2002), 12795-12800.
    [45] Dev. Cell, 14 (2008), 324-330.
    [46] Nat. Genet., 9 (1995), 184-190.
    [47] J. Comput. Appl. Math., 205 (2007), 696-707.
    [48] Nature, 457 (2009), 309-312.
    [49] Science, 327 (2010), 1142-1145.
    [50] Ann. Rev. Biophy., 37 (2008), 417-444.
    [51] Mol. Cell, 3 (1999), 593-600.
    [52] J. Math. Biol., 68 (2014), 1051-1070.
    [53] Biophy. J., 106 (2014), 467-478.
    [54] Biophy. J., 102 (2012), 1247-1257.
    [55] Biophy. J., 106 (2014), 479-488.
    [56] Mol. Syst. Biol., 8 (2012), 613.
    [57] J. Theor. Biol., 246 (2007), 725-745.
    [58] FEBS Lett., 582 (2008), 2905-2910.
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1765) PDF downloads(477) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog