Hes1 (Hairy and enhancer of split 1) is a transcriptional repressor that plays a fundamental role in the regulation of embryogenesis and cell lineage specification. The temporal dynamics of Hes1 mRNA and Hes1 protein expression are known to exhibit sustained oscillations. However, many existing mathematical models can reproduce these oscillations only transiently, eventually dampening toward a steady state. This limits their biological fidelity, as sustained oscillations are observed in vitro and in vivo under physiological conditions. To address these limitations, we propose a more biologically realistic framework by incorporating both transcriptional/translational time delays and spatial diffusion effects into a Reaction-Diffusion (RD) system with discrete time delays. The model describes the spatiotemporal dynamics of Hes1 mRNA and protein concentrations in the cytoplasm and nucleus. We establish the conditions under which the RD model undergoes a delay-induced Hopf bifurcation, leading to the emergence of stable periodic solutions. Furthermore, our analysis establishes explicit criteria on the delay and diffusion coefficients that ensure the existence of sustained oscillatory patterns. Numerical simulations are conducted to validate the theoretical predictions, demonstrating the persistence and stability of oscillations under a range of biologically plausible parameters.
Citation: Mohammed Alanazi, Majid Bani-Yaghoub, Bi-Botti C. Youan. Stable periodic solutions of a delayed reaction-diffusion model of Hes1-mRNA interactions[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 2152-2175. doi: 10.3934/mbe.2025079
Hes1 (Hairy and enhancer of split 1) is a transcriptional repressor that plays a fundamental role in the regulation of embryogenesis and cell lineage specification. The temporal dynamics of Hes1 mRNA and Hes1 protein expression are known to exhibit sustained oscillations. However, many existing mathematical models can reproduce these oscillations only transiently, eventually dampening toward a steady state. This limits their biological fidelity, as sustained oscillations are observed in vitro and in vivo under physiological conditions. To address these limitations, we propose a more biologically realistic framework by incorporating both transcriptional/translational time delays and spatial diffusion effects into a Reaction-Diffusion (RD) system with discrete time delays. The model describes the spatiotemporal dynamics of Hes1 mRNA and protein concentrations in the cytoplasm and nucleus. We establish the conditions under which the RD model undergoes a delay-induced Hopf bifurcation, leading to the emergence of stable periodic solutions. Furthermore, our analysis establishes explicit criteria on the delay and diffusion coefficients that ensure the existence of sustained oscillatory patterns. Numerical simulations are conducted to validate the theoretical predictions, demonstrating the persistence and stability of oscillations under a range of biologically plausible parameters.
| [1] |
S. K. Bae, Y. Bessho, M. Hojo, R. Kageyama, The bhlh gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation, Development, 127 (2000), 2933–2943. https://doi.org/10.1242/dev.127.13.2933 doi: 10.1242/dev.127.13.2933
|
| [2] |
R. L. Davis, D. L. Turner, Vertebrate hairy and enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning, Oncogene, 20 (2001), 8342–8357. https://doi.org/10.1038/sj.onc.1205094 doi: 10.1038/sj.onc.1205094
|
| [3] |
V. Sriuranpong, M. W. Borges, C. L. Strock, E. K. Nakakura, D. N. Watkins, C. M. Blaumueller, et al., Notch signaling induces rapid degradation of achaete-scute homolog 1, Mol. Cell. Biol., 22 (2002), 3129–3139. https://doi.org/10.1128/MCB.22.9.3129-3139.2002 doi: 10.1128/MCB.22.9.3129-3139.2002
|
| [4] |
R. Kageyama, T. Ohtsuka, T. Kobayashi, The Hes gene family: repressors and oscillators that orchestrate embryogenesis, Development, 134 (2007), 1243–1251. https://doi.org/10.1242/dev.000786 doi: 10.1242/dev.000786
|
| [5] |
T. Kobayashi, R. Kageyama, Expression dynamics and functions of hes factors in development and diseases, Curr. Top. Dev. Biol., 110 (2014), 263–283. https://doi.org/10.1016/B978-0-12-405943-6.00007-5 doi: 10.1016/B978-0-12-405943-6.00007-5
|
| [6] |
A. Fischer, M. Gessler, Delta–Notch—and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors, Nucleic Acids Res., 35 (2007), 4583–4596. https://doi.org/10.1093/nar/gkm477 doi: 10.1093/nar/gkm477
|
| [7] |
R. Kageyama, T. Ohtsuka, K. Tomita, The bHLH gene Hes1 regulates differentiation of multiple cell types, Mol. Cells, 10 (2000), 1–7. https://doi.org/10.1007/s10059-000-0001-0 doi: 10.1007/s10059-000-0001-0
|
| [8] |
H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, et al., Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop, Science, 298 (2002), 840–843. https://doi.org/10.1126/science.1074560 doi: 10.1126/science.1074560
|
| [9] |
J. Ross, mRNA stability in mammalian cells, Microbiol. Rev., 59 (1995), 423–450. https://doi.org/10.1128/mr.59.3.423-450.1995 doi: 10.1128/mr.59.3.423-450.1995
|
| [10] |
L. E. Maquat, G. G. Carmichael, Quality control of mRNA function, Cell, 104 (2001), 173–176. https://doi.org/10.1016/S0092-8674(01)00202-1 doi: 10.1016/S0092-8674(01)00202-1
|
| [11] |
U. Sahin, K. Karikó, Ö. Türeci, mrna-based therapeutics—developing a new class of drugs, Nat. Rev. Drug Discovery, 13 (2014), 759–780. https://doi.org/10.1038/nrd4278 doi: 10.1038/nrd4278
|
| [12] |
H. Hirata, S. Yoshiura, T. Ohtsuka, Y. Bessho, T. Harada, K. Yoshikawa, et al., Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop, Science, 298 (2002), 840–843. https://doi.org/10.1126/science.1074560 doi: 10.1126/science.1074560
|
| [13] |
M. H. Jensen, K. Sneppen, G. Tiana, Sustained oscillations and time delays in gene expression of protein Hes1, FEBS Lett., 541 (2003), 176–177. https://doi.org/10.1016/S0014-5793(03)00279-5 doi: 10.1016/S0014-5793(03)00279-5
|
| [14] |
N. A. M. Monk, Oscillatory expression of Hes1, p53, and NF-kB driven by transcriptional time delays, Curr. Biol., 13 (2003), 1409–1413. https://doi.org/10.1016/S0960-9822(03)00494-9 doi: 10.1016/S0960-9822(03)00494-9
|
| [15] |
M. Santillán, On the use of the hill functions in mathematical modelsof gene regulatory networks, Math. Modell. Nat. Phenom., 3 (2008), 85–97. https://doi.org/10.1051/mmnp:2008056 doi: 10.1051/mmnp:2008056
|
| [16] |
S. Bernard, B. Čajavec, L. Pujo-Menjouet, L. Mackey, H. Herzel, Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations, Philos. Trans. R. Soc. London, Ser. A, 364 (2006), 1155–1170. https://doi.org/10.1098/rsta.2006.1761 doi: 10.1098/rsta.2006.1761
|
| [17] |
K. Rateitschak, O. Wolkenhauer, Intracellular delay limits cyclic changes in gene expression, Math. Biosci., 205 (2007), 163–179. https://doi.org/10.1016/j.mbs.2006.08.010 doi: 10.1016/j.mbs.2006.08.010
|
| [18] |
H. Momiji, N. A. M. Monk, Dissecting the dynamics of the Hes1 genetic oscillator, J. Theor. Biol., 254 (2008), 784–798. https://doi.org/10.1016/j.jtbi.2008.07.013 doi: 10.1016/j.jtbi.2008.07.013
|
| [19] |
D. Kasinathan, D. Chalishajar, R. Kasinathan, R. Kasinathan, S. Karthikeyan, Trajectory controllability of higher-order fractional neutral stochastic system with non-instantaneous impulses via state-dependent delay with numerical simulation followed by hearth wall degradation process, Int. J. Dyn. Control, 13 (2025), 104. https://doi.org/10.1007/s40435-025-01605-w doi: 10.1007/s40435-025-01605-w
|
| [20] |
D. Kasinathan, R. Kasinathan, R. Kasinathan, D. Chalishajar, Exponential stability for higher-order impulsive fractional neutral stochastic integro-delay differential equations with mixed brownian motions and non-local conditions, Int. J. Optim. Control Theor. Appl., 15 (2025), 103–122. https://doi.org/10.36922/ijocta.1524 doi: 10.36922/ijocta.1524
|
| [21] | D. N. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Exponential stability of higher order fractional neutral stochastic differential equation via integral contractors, Math. Methods Appl. Sci., in press. |
| [22] |
Y. Chi, Y. Dong, L. Zhang, Z. Qiu, X. Zheng, Z. Li, Collaborative control of UAV swarms for target capture based on intelligent control theory, Mathematics, 13 (2025), 413. https://doi.org/10.3390/math13030413 doi: 10.3390/math13030413
|
| [23] |
M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson, M. A. J. Chaplain, Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways, J. Theor. Biol., 273 (2011), 15–31. https://doi.org/10.1016/j.jtbi.2010.12.016 doi: 10.1016/j.jtbi.2010.12.016
|
| [24] |
Y. Zhang, J. Cao, L. Liu, H. Liu, Z. Li, Complex role of time delay in dynamical coordination of neural progenitor fate decisions mediated by notch pathway, Chaos, Solitons Fractals, 180 (2024), 114479. https://doi.org/10.1016/j.chaos.2024.114479 doi: 10.1016/j.chaos.2024.114479
|
| [25] |
A. Giri, S. Kar, Deciphering the impact of pulsatile input in the population-level synchrony of the Hes1 oscillators, J. Chem. Sci., 135 (2023), 71. https://doi.org/10.1007/s12039-023-02177-y doi: 10.1007/s12039-023-02177-y
|
| [26] |
A. Rowntree, N. Sabherwal, N. Papalopulu, Bilateral feedback in oscillator model is required to explain the coupling dynamics of Hes1 with the cell cycle, Mathematics, 10 (2022), 2323. https://doi.org/10.3390/math10132323 doi: 10.3390/math10132323
|
| [27] |
S. N. Singh, M. Z. Malik, R. K. B. Singh, Molecular crosstalk: Notch can manipulate Hes1 and miR-9 behavior, J. Theor. Biol., 504 (2020), 110404. https://doi.org/10.1016/j.jtbi.2020.110404 doi: 10.1016/j.jtbi.2020.110404
|
| [28] |
T. Iwasaki, R. Takiguchi, T. Hiraiwa, T. G. Yamada, K. Yamazaki, N. F. Hiroi, et al., Neural differentiation dynamics controlled by multiple feedback loops in a comprehensive molecular interaction network, Processes, 8 (2020), 166. https://doi.org/10.3390/pr8020166 doi: 10.3390/pr8020166
|
| [29] |
M. Boareto, D. Iber, V. Taylor, Differential interactions between Notch and ID factors control neurogenesis by modulating Hes factor autoregulation, Development, 144 (2017), 3465–3474. https://doi.org/10.1242/dev.152520 doi: 10.1242/dev.152520
|
| [30] |
S. Li, Y. Liu, Z. Liu, R. Wang, Neural fate decisions mediated by combinatorial regulation of Hes1 and miR-9, J. Biol. Phys., 42 (2016), 53–68. https://doi.org/10.1111/j.1728-4457.2016.00107.x doi: 10.1111/j.1728-4457.2016.00107.x
|
| [31] |
H. Wang, Y. Huang, L. Zheng, Y. Bao, L. G. Sun, Y. Wu, et al., Modelling coupled oscillations in the Notch, Wnt, and FGF signaling pathways during somitogenesis: a comprehensive mathematical model, Comput. Intell. Neurosci., 2015 (2015), 387409. https://doi.org/10.1155/2015/387409 doi: 10.1155/2015/387409
|
| [32] |
M. Sturrock, A. Hellander, S. Aldakheel, L. Petzold, M. A. J. Chaplain, The role of dimerisation and nuclear transport in the Hes1 gene regulatory network, Bull. Math. Biol., 76 (2014), 766–798. https://doi.org/10.1007/s11538-013-9842-5 doi: 10.1007/s11538-013-9842-5
|
| [33] | S. Li, Z. Liu, R. Wang, Neural fate decisions mediated by oscillatory and sustained Hes1, in Proceedings of the 2014 8th International Conference on Systems Biology (ISB), IEEE, (2014), 189–193. https://doi.org/10.1109/ISB.2014.6990754 |
| [34] |
A. Barton, A. J. Fendrik, Sustained vs. oscillating expressions of Ngn2, Dll1 and Hes1: a model of neural differentiation of embryonic telencephalon, J. Theor. Biol., 328 (2013), 1–8. https://doi.org/10.1016/j.jtbi.2013.03.004 doi: 10.1016/j.jtbi.2013.03.004
|
| [35] |
M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thompson, M. A. J. Chaplain, Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53–Mdm2 pathways: insights from spatio-temporal modelling, Bull. Math. Biol., 74 (2012), 1531–1579. https://doi.org/10.1007/s11538-012-9725-1 doi: 10.1007/s11538-012-9725-1
|
| [36] |
M. A. Tabatabai, W. M. Eby, Z. Bursac, Oscillabolastic model, a new model for oscillatory dynamics, applied to the analysis of Hes1 gene expression and Ehrlich ascites tumor growth, J. Biomed. Inf., 45 (2012), 401–407. https://doi.org/10.1162/LEON_a_00435 doi: 10.1162/LEON_a_00435
|
| [37] |
M. Bani-Yaghoub, D. E. Amundsen, Dynamics of notch activity in a model of interacting signaling pathways, Bull. Math. Biol., 72 (2010), 780–804. https://doi.org/10.1007/s11538-009-9469-8 doi: 10.1007/s11538-009-9469-8
|
| [38] | M. Bani-Yaghoub, D. E. Amundsen, The role of Retinoic Acid and Notch in the symmetry breaking instabilities for axon formation, in International Conference on Mathematical Biology, World Scientific and Engineering Academy and Society (WSEAS), 2006. |
| [39] | M. Bani-Yaghoub, D. E. Amundsen, Turing-type instabilities in a mathematical model of notch and retinoic acid pathways, 2006. |
| [40] | M. Bani-Yaghoub, Analysis and applications of delay differential equations in biology and medicine, preprint, arXiv: 1701.04173. |
| [41] | M. Bani-Yaghoub, Introduction to delay models and their wave solutions, preprint, arXiv: 1701.04703. |
| [42] |
M. Bani-Yaghoub, C. Ou, G. Yao, Delay-induced instabilities of stationary solutions in a single species nonlocal hyperbolic-parabolic population model, Discrete Contin. Dyn. Syst. - Ser. S, 13 (2020), 2509–2535. https://doi.org/10.3934/dcdss.2020195 doi: 10.3934/dcdss.2020195
|
| [43] | K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht, Netherlands, 1992. |
| [44] |
Y. Zhang, H. Liu, F. Yan, J. Zhou, Oscillatory behaviors in genetic regulatory networks mediated by microrna with time delays and reaction-diffusion terms, IEEE Trans. Nanobiosci., 16 (2017), 166–176. https://doi.org/10.1109/TNB.2017.2675446 doi: 10.1109/TNB.2017.2675446
|
| [45] |
X. Wang, A simple proof of descartes's rule of signs, Am. Math. Mon., 111 (2004), 525–526. https://doi.org/10.1080/00029890.2004.11920108 doi: 10.1080/00029890.2004.11920108
|
| [46] | S. Ruan, J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impulsive Syst. Ser. A, 10 (2003), 863–874. |
| [47] |
T. Dong, X. Liao, A. Wang, Stability and Hopf bifurcation of a complex-valued neural network with two time delays, Nonlinear Dyn., 82 (2015), 173–184. https://doi.org/10.1007/s11071-015-2147-5 doi: 10.1007/s11071-015-2147-5
|
| [48] |
T. Dong, Q. Zhang, Stability and oscillation analysis of a gene regulatory network with multiple time delays and diffusion rate, IEEE Trans. Nanobiosci., 19 (2020), 285–298. https://doi.org/10.1109/TNB.2020.2964900 doi: 10.1109/TNB.2020.2964900
|
| [49] | J. K. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, Springer, 2012. |
| [50] |
A. Verdugo, R. Rand, Hopf bifurcation in a DDE model of gene expression, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 235–242. https://doi.org/10.3998/ark.5550190.0009.225 doi: 10.3998/ark.5550190.0009.225
|