Ecosystem stability is increasingly threatened by rapid environmental fluctuations that alter species interactions and survival strategies. Traditional steady-state analyses often overlook transient dynamics that govern ecosystem responses to accelerating change. This study explored rate-induced tipping (R-tipping), a phenomenon where environmental change rates outpace species' adaptive capacity, triggering abrupt shifts between ecological states. Our findings demonstrate that species persistence depends on a delicate balance between cooperation-associated costs, population densities, and environmental variation rates. Under moderate fluctuations, species can track unstable states before reaching new equilibria, enhancing resilience. However, beyond critical thresholds, homoclinic and saddle-node bifurcations destabilize coexistence induced with increasing cooperation strength, leading to extinction cascades. By integrating time-dependent basin stability analysis, we uncovered mechanisms driving ecological transitions and identified key factors influencing long-term persistence. This research highlights the need for dynamic models to predict tipping events and informs conservation strategies for mitigating biodiversity loss in rapidly changing environments.
Citation: Suvranil Chowdhury, Sujit Halder, Kaushik Kayal, Joydev Chattopadhyay. Cooperation-conflict dynamics and ecological resilience under environmental disturbances[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 2120-2151. doi: 10.3934/mbe.2025078
Ecosystem stability is increasingly threatened by rapid environmental fluctuations that alter species interactions and survival strategies. Traditional steady-state analyses often overlook transient dynamics that govern ecosystem responses to accelerating change. This study explored rate-induced tipping (R-tipping), a phenomenon where environmental change rates outpace species' adaptive capacity, triggering abrupt shifts between ecological states. Our findings demonstrate that species persistence depends on a delicate balance between cooperation-associated costs, population densities, and environmental variation rates. Under moderate fluctuations, species can track unstable states before reaching new equilibria, enhancing resilience. However, beyond critical thresholds, homoclinic and saddle-node bifurcations destabilize coexistence induced with increasing cooperation strength, leading to extinction cascades. By integrating time-dependent basin stability analysis, we uncovered mechanisms driving ecological transitions and identified key factors influencing long-term persistence. This research highlights the need for dynamic models to predict tipping events and informs conservation strategies for mitigating biodiversity loss in rapidly changing environments.
| [1] |
R. Arumugam, F. Lutscher, F. Guichard, Tracking unstable states: Ecosystem dynamics in a changing world, Oikos, 130 (2021), 525–540. https://doi.org/10.1111/oik.08051 doi: 10.1111/oik.08051
|
| [2] |
G. Keller, Impacts, volcanism and mass extinction: Random coincidence or cause and effect?, Aust. J. Earth Sci., 52 (2005), 725–757. https://doi.org/10.1080/08120090500170393 doi: 10.1080/08120090500170393
|
| [3] |
L. W. Alvarez, W. Alvarez, F. Asaro, H. V. Michel, Extraterrestrial cause for the cretaceous-tertiary extinction, Science, 208 (1980), 1095–1108. https://doi.org/10.1126/science.208.4448.1095 doi: 10.1126/science.208.4448.1095
|
| [4] |
M. Scheffer, S. R. Carpenter, Catastrophic regime shifts in ecosystems: Linking theory to observation, Trends Ecol. Evol., 18 (2003), 648–656. https://doi.org/10.1016/j.tree.2003.09.002 doi: 10.1016/j.tree.2003.09.002
|
| [5] |
M. Scheffer, S. R. Carpenter, T. M. Lenton, J. Bascompte, W. Brock, V. Dakos, et al., Anticipating critical transitions, Science, 338 (2012), 344–348. https://doi.org/10.1126/science.1225244 doi: 10.1126/science.1225244
|
| [6] |
K. Siteur, M. B. Eppinga, A. Doelman, E. Siero, M. Rietkerk, Ecosystems off track: Rate-induced critical transitions in ecological models, Oikos, 125 (2016), 1689–1699. https://doi.org/10.1111/oik.03112 doi: 10.1111/oik.03112
|
| [7] |
C. S. Holling, Resilience and stability of ecological systems, Ann. Rew., 4 (1973), 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245 doi: 10.1146/annurev.es.04.110173.000245
|
| [8] |
C. Folke, S. R. Carpenter, B. Walker, M. Scheffer, T. Chapin, J. Rockström, Resilience thinking: Integrating resilience, adaptability and transformability, Ecol. Soc., 15 (2010). https://doi.org/10.5751/ES-03610-150420 doi: 10.5751/ES-03610-150420
|
| [9] |
E. Zvereva, M. Kozlov, Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: A metaanalysis, Global Change Biol., 12 (2006), 27–41. https://doi.org/10.1111/j.1365-2486.2005.01086.x doi: 10.1111/j.1365-2486.2005.01086.x
|
| [10] |
G. Woodward, N. Bonada, L. E. Brown, R. G. Death, I. Durance, C. Gray, et al., The effects of climatic fluctuations and extreme events on running water ecosystems, Philos. Trans. R. Soc. B, 371 (2016), 20150274. https://doi.org/10.1098/rstb.2015.0274 doi: 10.1098/rstb.2015.0274
|
| [11] |
E. E. Cleland, I. Chuine, A. Menzel, H. A. Mooney, M. D. Schwartz, Shifting plant phenology in response to global change, Trends Ecol. Evol., 22 (2007), 357–365. https://doi.org/10.1016/j.tree.2007.04.003 doi: 10.1016/j.tree.2007.04.003
|
| [12] |
E. A. Ainsworth, S. P. Long, What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2, New Phytol., 165 (2005), 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x doi: 10.1111/j.1469-8137.2004.01224.x
|
| [13] |
C. L. Boggs, The fingerprints of global climate change on insect populations, Curr. Opin. Insect Sci., 17 (2016), 69–73. https://doi.org/10.1016/j.cois.2016.07.004 doi: 10.1016/j.cois.2016.07.004
|
| [14] | D. Rubenstein, J. Kealey, Cooperation, conflict, and the evolution of complex animal societies, Nat. Educ. Knowl., 3 (2010), 78. |
| [15] |
M. Laparie, D. Renault, Physiological responses to temperature in Merizodus soledadinus (Col., Carabidae), a subpolar carabid beetle invading sub-Antarctic islands, Polar Biol., 39 (2016), 35–45. https://doi.org/10.1007/s00300-014-1600-0 doi: 10.1007/s00300-014-1600-0
|
| [16] |
J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic theory of ecology, Ecology, 85 (2004), 1771–1789. https://doi.org/10.1890/03-9000 doi: 10.1890/03-9000
|
| [17] |
L. I. Seifert, G. Weithoff, U. Gaedke, M. Vos, Warming-induced changes in predation, extinction and invasion in an ectotherm food web, Oecologia, 178 (2015), 485–496. https://doi.org/10.1007/s00442-014-3211-4 doi: 10.1007/s00442-014-3211-4
|
| [18] |
P. W. Sherman, Nepotism and the evolution of alarm calls: Alarm calls of Belding's ground squirrels warn relatives, and thus are expressions of nepotism, Science, 197 (1977), 1246–1253. https://doi.org/10.1126/science.197.4310.1246 doi: 10.1126/science.197.4310.1246
|
| [19] |
F. Gao, F. Chen, F. Ge, Elevated CO2 lessens predation of Chrysopa sinica on Aphis gossypii, Entomol. Exp. Appl., 135 (2010), 135–140. https://doi.org/10.1111/j.1570-7458.2010.00979.x doi: 10.1111/j.1570-7458.2010.00979.x
|
| [20] |
W. T. Hentley, A. J. Vanbergen, R. S. Hails, T. H. Jones, S. N. Johnson, Elevated atmospheric CO2 impairs aphid escape responses to predators and conspecific alarm signals, J. Chem. Ecol., 40 (2014), 1110–1114. https://doi.org/10.1007/s10886-014-0506-1 doi: 10.1007/s10886-014-0506-1
|
| [21] |
B. T. Barton, Climate warming and predation risk during herbivore ontogeny, Ecology, 91 (2010), 2811–2818. https://doi.org/10.1890/09-2278.1 doi: 10.1890/09-2278.1
|
| [22] |
B. T. Barton, A. P. Beckerman, O. J. Schmitz, Climate warming strengthens indirect interactions in an old-field food web, Ecology, 90 (2009), 2346–2351. https://doi.org/10.1890/08-2254.1 doi: 10.1890/08-2254.1
|
| [23] |
A. Sentis, F. Ramon-Portugal, J. Brodeur, J. L. Hemptinne, The smell of change: Warming affects species interactions mediated by chemical information, Global Change Biol., 21 (2015), 3586–3594. https://doi.org/10.1111/gcb.12932 doi: 10.1111/gcb.12932
|
| [24] |
T. Clutton-Brock, D. Gaynor, R. Kansky, A. MacColl, G. McIlrath, P. Chadwick, et al., Costs of cooperative behaviour in suricates (Suricata suricatta), Proc. R. Soc. B, 265 (1998), 185–190. https://doi.org/10.1098/rspb.1998.0281 doi: 10.1098/rspb.1998.0281
|
| [25] |
A. Puentes, M. Torp, M. Weih, C. Björkman, Direct effects of elevated temperature on a tri-trophic system: Salix, leaf beetles and predatory bugs, Arthropod-Plant Interact., 9 (2015), 567–575. https://doi.org/10.1007/s11829-015-9401-0 doi: 10.1007/s11829-015-9401-0
|
| [26] |
L. E. Culler, M. P. Ayres, R. A. Virginia, In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster, Proc. R. Soc. B, 282 (2015), 20151549. https://doi.org/10.1098/rspb.2015.1549 doi: 10.1098/rspb.2015.1549
|
| [27] | S. Chowdhury, S. Sarkar, J. Chattopadhyay, Modeling cost-associated cooperation: A dilemma of species interaction unveiling new aspects of fear effect, preprint, arXiv: 2501.16522. |
| [28] |
M. Scheffer, S. Carpenter, J. A. Foley, C. Folke, B. Walker, Catastrophic shifts in ecosystems, Nature, 413 (2001), 591–596. https://doi.org/10.1038/35098000 doi: 10.1038/35098000
|
| [29] |
R. Arumugam, F. Guichard, F. Lutscher, Persistence and extinction dynamics driven by the rate of environmental change in a predator-prey metacommunity, Theor. Ecol., 13 (2020), 629–643. https://doi.org/10.1007/s12080-020-00473-8 doi: 10.1007/s12080-020-00473-8
|
| [30] |
P. J. Menck, J. Heitzig, N. Marwan, J. Kurths, How basin stability complements the linear-stability paradigm, Nat. Phys., 9 (2013), 89–92. https://doi.org/10.1038/nphys2516 doi: 10.1038/nphys2516
|
| [31] |
P. Ashwin, S. Wieczorek, R. Vitolo, P. Cox, Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system, Philos. Trans. R. Soc. A, 370 (2012), 1166–1184. https://doi.org/10.1098/rsta.2011.0306 doi: 10.1098/rsta.2011.0306
|
| [32] |
C. Cosner, D. L. DeAngelis, J. S. Ault, D. B. Olson, Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol., 56 (1999), 65–75. https://doi.org/10.1006/tpbi.1999.1414 doi: 10.1006/tpbi.1999.1414
|
| [33] |
B. L. Partridge, J. Johansson, J. Kalish, The structure of schools of giant bluefin tuna in Cape Cod Bay, Environ. Biol. Fishes, 9 (1983), 253–262. https://doi.org/10.1007/BF00692374 doi: 10.1007/BF00692374
|
| [34] | R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, 2019. |
| [35] |
C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly, Can. Entomol., 91 (1959), 293–320. https://doi.org/10.4039/Ent91293-5 doi: 10.4039/Ent91293-5
|
| [36] |
S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
|
| [37] |
F. Pianosi, K. Beven, J. Freer, J. W. Hall, J. Rougier, D. B. Stephenson, et al., Sensitivity analysis of environmental models: A systematic review with practical workflow, Environ. Modell. Software, 79 (2016), 214–232. https://doi.org/10.1016/j.envsoft.2016.02.008 doi: 10.1016/j.envsoft.2016.02.008
|
| [38] |
A. Dhooge, W. Govaerts, Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), 141–164. https://doi.org/10.1145/779359.779362 doi: 10.1145/779359.779362
|
| [39] |
A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer, B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Modell. Dyn. Syst., 14 (2008), 147–175. https://doi.org/10.1080/13873950701742754 doi: 10.1080/13873950701742754
|
| [40] |
A. Hastings, K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y. C. Lai, et al., Transient phenomena in ecology, Science, 361 (2018), eaat6412. https://doi.org/10.1126/science.aat6412 doi: 10.1126/science.aat6412
|
| [41] |
K. T. Frank, B. Petrie, J. A. Fisher, W. C. Leggett, Transient dynamics of an altered large marine ecosystem, Nature, 477 (2011), 86–89. https://doi.org/10.1038/nature10285 doi: 10.1038/nature10285
|
| [42] |
P. E. O'Keeffe, S. Wieczorek, Tipping phenomena and points of no return in ecosystems: Beyond classical bifurcations, SIAM J. Appl. Dyn. Syst., 19 (2020), 2371–2402. https://doi.org/10.1137/19M1242884 doi: 10.1137/19M1242884
|
| [43] |
A. N. Laws, Climate change effects on predator-prey interactions, Curr. Opin. Insect Sci., 23 (2017), 28–34. https://doi.org/10.1016/j.cois.2017.06.010 doi: 10.1016/j.cois.2017.06.010
|
| [44] | G. Gundersen, E. Johannesen, H. Andreassen, R. Ims, Source-sink dynamics: How sinks affect demography of sources, Ecol. Lett., 4 (2001), 14–21. |
| [45] | Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, 1998. |
| [46] |
O. J. Schmitz, B. T. Barton, Climate change effects on behavioral and physiological ecology of predator-prey interactions: Implications for conservation biological control, Biol. Control, 75 (2014), 87–96. https://doi.org/10.1016/j.biocontrol.2013.10.001 doi: 10.1016/j.biocontrol.2013.10.001
|
| [47] |
J. R. Bernhardt, M. I. O'Connor, J. M. Sunday, A. Gonzalez, Life in fluctuating environments, Philos. Trans. R. Soc. B, 375 (2020), 20190454. https://doi.org/10.1098/rstb.2019.0454 doi: 10.1098/rstb.2019.0454
|
| [48] |
L. Carraro, F. Altermatt, A. Rinaldo, River networks as ecological corridors: A coherent ecohydrological perspective, Adv. Water Resour., 113 (2018), 27–43. https://doi.org/10.1016/j.advwatres.2018.01.011 doi: 10.1016/j.advwatres.2018.01.011
|
| [49] |
G. Sugihara, R. May, H. Ye, C. H. Hsieh, E. Deyle, M. Fogarty, et al., Detecting causality in complex ecosystems, Science, 338 (2012), 496–500. https://doi.org/10.1126/science.1227079 doi: 10.1126/science.1227079
|
| [50] |
M. A. Campo-Bescós, R. Muñoz-Carpena, D. A. Kaplan, J. Southworth, L. Zhu, P. R. Waylen, Beyond precipitation: Physiographic gradients dictate the relative importance of environmental drivers on savanna vegetation, PLOS ONE, 8 (2013), e72348. https://doi.org/10.1371/journal.pone.0072348 doi: 10.1371/journal.pone.0072348
|
| [51] |
M. A. Campo-Bescós, R. Muñoz-Carpena, J. Southworth, L. Zhu, P. R. Waylen, Combined spatial and temporal effects of environmental drivers on long-term NDVI dynamics in the African savanna, Remote Sens., 5 (2013), 6513–6538. https://doi.org/10.3390/rs5126513 doi: 10.3390/rs5126513
|