Research article Special Issues

Dynamics of stochastic diffusive coral reef ecosystems with Lévy noise

  • Published: 10 July 2025
  • This paper was mainly concerned with the asymptotic dynamics of stochastic diffusive coral reef ecosystems with Lévy noise. First, we proved the well-posedness and energy estimates of solution. Second, under some suitable conditions, we proved the existence and uniqueness of weak pullback mean random attractors and invariant measures. Finally, a large deviation principle result for solutions of stochastic diffusive coral reef ecosystems with Lévy noise was obtained by a variational formula for positive functionals of a Poisson random measure and the method of weak convergence. Interestingly, this showed the effect of Lévy noise which can stabilize or destabilize systems, which was significantly different from the classical Brownian motion process.

    Citation: Zaitang Huang, Zhiye Zhong, Yousu Huang, Yumei Lu. Dynamics of stochastic diffusive coral reef ecosystems with Lévy noise[J]. Mathematical Biosciences and Engineering, 2025, 22(8): 2176-2212. doi: 10.3934/mbe.2025080

    Related Papers:

  • This paper was mainly concerned with the asymptotic dynamics of stochastic diffusive coral reef ecosystems with Lévy noise. First, we proved the well-posedness and energy estimates of solution. Second, under some suitable conditions, we proved the existence and uniqueness of weak pullback mean random attractors and invariant measures. Finally, a large deviation principle result for solutions of stochastic diffusive coral reef ecosystems with Lévy noise was obtained by a variational formula for positive functionals of a Poisson random measure and the method of weak convergence. Interestingly, this showed the effect of Lévy noise which can stabilize or destabilize systems, which was significantly different from the classical Brownian motion process.



    加载中


    [1] P. Mumby, The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs, Ecol. Appl., 16 (2006), 747–769. https://doi.org/10.1890/1051-0761(2006)016[0747:TIOEGS]2.0.CO;2 doi: 10.1890/1051-0761(2006)016[0747:TIOEGS]2.0.CO;2
    [2] T. Gardner, I. Cote, J. Gill, A. Grant, A. Watkinson, Long-term region-wide declines in Caribbean corals, Science, 301 (2003), 958–960. https://doi.org/10.1126/science.1086050 doi: 10.1126/science.1086050
    [3] T. Hughes, Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reefs, Science, 265 (1994), 1547–1551. https://doi.org/10.1126/science.265.5178.154 doi: 10.1126/science.265.5178.154
    [4] J. Pandolfi, R. Bradbury, E. Sala, T. Hughes, K. Bjorndal, R. Cooke, et al., Global trajectories of the long-term decline of coral reef ecosystems, Science, 301 (2003), 955–958. https://doi.org/10.1126/science.1085706 doi: 10.1126/science.1085706
    [5] T. Hughes, A. Baird, D. Bellwood, M. Card, S. Connolly, C. Folke, et al., Climate change, human impacts, and the resilience of coral reefs, Science, 301 (2003), 929–933. https://doi.org/10.1126/science.1085046 doi: 10.1126/science.1085046
    [6] S. Yee, D. Santavy, M. Barron, Assessing the effects of disease and bleaching on florida keys corals by fitting population models to data, Ecol. Modell., 222 (2011), 1323–1332. https://doi.org/10.1016/j.ecolmodel.2011.01.009 doi: 10.1016/j.ecolmodel.2011.01.009
    [7] J. Renzi, E. Shaver, D. Burkepile, B. R. Silliman, The role of predators in coral disease dynamics, Coral Reefs, 41 (2022), 405–422. https://doi.org/10.1007/s00338-022-02219-w doi: 10.1007/s00338-022-02219-w
    [8] J. Connell, Disturbance and recovery of coral assemblages, Coral Reefs, 16 (1997), s101–s113. https://doi.org/10.1007/s003380050246 doi: 10.1007/s003380050246
    [9] T. Hughes, Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef, Science, 265 (1994), 1547–1551. https://doi.org/10.1126/science.265.5178.1547 doi: 10.1126/science.265.5178.1547
    [10] E. Weil, G. Smith, D. Gil-Agudelo, Status and progress in coral reef disease research, Dis. Aquat. Org., 69 (2006), 1–7. https://doi.org/10.3354/dao069001 doi: 10.3354/dao069001
    [11] P. Rani, P. Roy, Reef predators unveiled: Unraveling corallivores' influence on coral reef Ecosystems, Comput. Appl. Math., 44 (2025), 1–54. https://doi.org/10.1007/s40314-024-02995-x doi: 10.1007/s40314-024-02995-x
    [12] X. Zhao, L. Liu, M. Liu, M. Fan, Stochastic dynamics of coral reef system with stage-structure for crown-of-thorns starfish, Chaos, Solitons Fractals, 181 (2024), 114629. https://doi.org/10.1016/j.chaos.2024.114629 doi: 10.1016/j.chaos.2024.114629
    [13] S. Zhao, S. Yuan, A coral reef benthic system with grazing intensity and immigrated macroalgae in deterministic and stochastic environments, Math. Biosci. Eng., 19 (2022), 3449–3471. https://doi.org/10.3934/mbe.2022159 doi: 10.3934/mbe.2022159
    [14] X. Zhao, L. Liu, H. Wang, M. Fan, Ecological effects of predator harvesting and environmental noises on oceanic coral reefs, Bull. Math. Biol., 85 (2023), 1–49. https://doi.org/10.1007/s11538-023-01166-z doi: 10.1007/s11538-023-01166-z
    [15] R. T. Paine, M. J. Tegner, E. A. Johnson, Compounded perturbations yield ecological surprises, Ecosystems, 1 (1998), 535–545. https://doi.org/10.1007/s100219900049 doi: 10.1007/s100219900049
    [16] M. Scheffer, S. Carpenter, J. Foley, C. Folke, B. Walker, Catastrophic shifts in ecosystems, Nature, 413 (2001), 591–596. https://doi.org/10.1038/35098000 doi: 10.1038/35098000
    [17] R. Alley, J. Marotzke, W. Nordhaus, J. Overpeck, D. Peteet, R. Pielke, et al., Abrupt climate change, Science, 299 (2003), 2005–2010. https://doi.org/10.1126/science.1081056
    [18] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge university Press, Cambridge, 2009.
    [19] Y. Zhao, S. Yuan, Stability in distribution of a stochastic hybrid competitive Lotka-Volterra model with Lévy jumps, Chaos, Solitons Fractals, 85 (2016), 98–109. https://doi.org/10.1016/j.chaos.2016.01.015 doi: 10.1016/j.chaos.2016.01.015
    [20] N. Nguyen, G. Yin, Stochastic Lotka-Volterra competitive reaction-diffusion systems perturbed by space-time white noise: Modeling and analysis, J. Differ. Equ., 282 (2021), 184–232. https://doi.org/10.1016/j.jde.2021.02.023 doi: 10.1016/j.jde.2021.02.023
    [21] M. Wintera, L. Xu, J. Zhai, T. Zhang, The dynamics of the stochastic shadow Gierer-Meinhardt system, J. Differ. Equ., 260 (2016), 84–114. https://doi.org/10.1016/j.jde.2015.08.047 doi: 10.1016/j.jde.2015.08.047
    [22] J. Xu, T. Caraballo, J. Valero, Dynamics and large deviations for fractional stochastic partial differential equations with Lévy noise, SIAM J. Math. Anal., 56 (2024), 1016–1067. https://doi.org/10.1137/22M1544440 doi: 10.1137/22M1544440
    [23] C. Sridevia, M. Suvinthraa, K. Balachandran, Large deviations for stochastic predator–prey model with Lévy noise, Nonlinear Anal-Model, 29 (2024), 720–745. https://doi.org/10.15388/namc.2024.29.35318 doi: 10.15388/namc.2024.29.35318
    [24] Z. Huang, J. Cao, Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise, Appl. Math. Comput., 330 (2018), 1–10. https://doi.org/10.1016/j.amc.2018.01.054 doi: 10.1016/j.amc.2018.01.054
    [25] A. Kumar, M. Mohan, Large deviation principle for occupation measures of stochastic generalized Burgers-Huxley equation, J. Theor. Probab., 36 (2023), 661–709. https://doi.org/10.1007/s10959-022-01180-2 doi: 10.1007/s10959-022-01180-2
    [26] Z. Dong, B. Guo, J. Wu, G. Zhou, Global well-posedness and regularity of stochastic 3D Burgers equation with multiplicative noise, SIAM J. Math. Anal., 55 (2023), 1847–1882. https://doi.org/10.1137/21M1413377 doi: 10.1137/21M1413377
    [27] X. Li, H. Wang, Z. Zhang, A. Hastings, Mathematical analysis of coral reef models, J. Math. Anal. Appl., 416 (2014), 352–373. https://doi.org/10.1016/j.jmaa.2014.02.053 doi: 10.1016/j.jmaa.2014.02.053
    [28] P. Mumby, A. Hastings, H. Edwards, Thresholds and the resilience of Caribbean coral reefs, Nature, 450 (2007), 98–101. https://doi.org/10.1038/nature06252 doi: 10.1038/nature06252
    [29] J. Blackwood, A. Hastings, P. Mumby, The effect of fishing on hysteresis in Caribbean coral reefs, Theor. Ecol., 5 (2012), 105–114. https://doi.org/10.1007/s12080-010-0102-0 doi: 10.1007/s12080-010-0102-0
    [30] J. Duan, A. Millet, Large deviations for the Boussinesq equations under random influences, Stochastic Processes Appl., 119 (2009), 2052–2081. https://doi.org/10.1016/j.spa.2008.10.004 doi: 10.1016/j.spa.2008.10.004
    [31] B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dyn. Differ. Equ., 31 (2019), 2177–2204. https://doi.org/10.1007/s10884-018-9696-5 doi: 10.1007/s10884-018-9696-5
    [32] P. Chow, Stochastic Partial Differential Equations (2nd edition), Chapman & Hall/CRC, 2014. https://doi.org/10.1201/b17823
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(686) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog