Stability and Hopf bifurcation in a diffusivepredator-prey system incorporating a prey refuge

  • Received: 01 February 2013 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 35Q92, 35B32; Secondary: 35B35.

  • A diffusive predator-prey model with Holling type II functionalresponse and the no-flux boundary condition incorporating aconstant prey refuge is considered. Globally asymptoticallystability of the positive equilibrium is obtained. Regarding theconstant number of prey refuge $m$ as a bifurcation parameter, byanalyzing the distribution of the eigenvalues, the existence ofHopf bifurcation is given. Employing the center manifold theoryand normal form method, an algorithm for determining theproperties of the Hopf bifurcation is derived. Some numericalsimulations for illustrating the analysis results are carried out.

    Citation: Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusivepredator-prey system incorporating a prey refuge[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 979-996. doi: 10.3934/mbe.2013.10.979

    Related Papers:

    [1] Qinyan shen, Jiang wang, Liangying zhao . To investigate the internal association between SARS-CoV-2 infections and cancer through bioinformatics. Mathematical Biosciences and Engineering, 2022, 19(11): 11172-11194. doi: 10.3934/mbe.2022521
    [2] Yue Hu, Xiaoqin Mei, Dong Tang . Long non-coding RNA XIST is down-regulated and correlated to better prognosis in ovarian cancer. Mathematical Biosciences and Engineering, 2020, 17(3): 2070-2081. doi: 10.3934/mbe.2020110
    [3] Yongyin Han, Maolin Liu, Zhixiao Wang . Key protein identification by integrating protein complex information and multi-biological features. Mathematical Biosciences and Engineering, 2023, 20(10): 18191-18206. doi: 10.3934/mbe.2023808
    [4] Li-Sha Pan, Zacharia Ackbarkha, Jing Zeng, Min-Li Huang, Zhen Yang, Hao Liang . Immune marker signature helps to predict survival in uveal melanoma. Mathematical Biosciences and Engineering, 2021, 18(4): 4055-4070. doi: 10.3934/mbe.2021203
    [5] Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
    [6] Yutong Man, Guangming Liu, Kuo Yang, Xuezhong Zhou . SNFM: A semi-supervised NMF algorithm for detecting biological functional modules. Mathematical Biosciences and Engineering, 2019, 16(4): 1933-1948. doi: 10.3934/mbe.2019094
    [7] Babak Khorsand, Abdorreza Savadi, Javad Zahiri, Mahmoud Naghibzadeh . Alpha influenza virus infiltration prediction using virus-human protein-protein interaction network. Mathematical Biosciences and Engineering, 2020, 17(4): 3109-3129. doi: 10.3934/mbe.2020176
    [8] Moxuan Zhang, Quan Zhang, Jilin Bai, Zhiming Zhao, Jian Zhang . Transcriptome analysis revealed CENPF associated with glioma prognosis. Mathematical Biosciences and Engineering, 2021, 18(3): 2077-2096. doi: 10.3934/mbe.2021107
    [9] Jian-Di Li, Gang Chen, Mei Wu, Yu Huang, Wei Tang . Downregulation of CDC14B in 5218 breast cancer patients: A novel prognosticator for triple-negative breast cancer. Mathematical Biosciences and Engineering, 2020, 17(6): 8152-8181. doi: 10.3934/mbe.2020414
    [10] Sufang Wu, Hua He, Jingjing Huang, Shiyao Jiang, Xiyun Deng, Jun Huang, Yuanbing Chen, Yiqun Jiang . FMR1 is identified as an immune-related novel prognostic biomarker for renal clear cell carcinoma: A bioinformatics analysis of TAZ/YAP. Mathematical Biosciences and Engineering, 2022, 19(9): 9295-9320. doi: 10.3934/mbe.2022432
  • A diffusive predator-prey model with Holling type II functionalresponse and the no-flux boundary condition incorporating aconstant prey refuge is considered. Globally asymptoticallystability of the positive equilibrium is obtained. Regarding theconstant number of prey refuge $m$ as a bifurcation parameter, byanalyzing the distribution of the eigenvalues, the existence ofHopf bifurcation is given. Employing the center manifold theoryand normal form method, an algorithm for determining theproperties of the Hopf bifurcation is derived. Some numericalsimulations for illustrating the analysis results are carried out.


    [1] Nonlinear Anal-Real, 11 (2010), 246-252.
    [2] Bull. Math. Biol., 57 (1995), 63-76.
    [3] J. Differ. Equations, 203 (2004), 331-364.
    [4] Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.
    [5] Trans. Amer. Math. Soc., 349 (1997), 2443-2475.
    [6] J. Differ. Equations, 229 (2006), 63-91.
    [7] Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 95-135.
    [8] Ecol. Model., 166 (2003), 135-146.
    [9] Nonlinear Anal-Real, 12 (2011), 2385-2395.
    [10] Cambridge University Press, Cambridge, 1981.
    [11] Princeton University Press, Princeton, 1978.
    [12] J. Anim. Ecol., 42 (1973), 693-726.
    [13] Am. Nat., 122 (1983), 521-541.
    [14] Taiwan. J. Math., 9 (2005), 151-173.
    [15] J. Math. Biol., 42 (2001), 489-506.
    [16] Appl. Math. Comput., 182 (2006), 672-683.
    [17] Yale Univ. Press, New Haven, Connecticut, 1976.
    [18] Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681-691.
    [19] Nonlinear Anal-Real, 10 (2009), 2558-2573.
    [20] J. Differ. Equations, 231 (2006), 534-550.
    [21] Theor. Popul. Biol., 53 (1998), 131-142.
    [22] J. Math. Biol., 36 (1998), 389-406.
    [23] J. Math. Biol., 88 (1988), 67-84.
    [24] Nonlinear Anal.-Real, 14 (2013), 1806-1816.
    [25] J. Math. Anal. Appl., 371 (2010), 323-340.
    [26] Math. Biosci., 218 (2009), 73-79.
    [27] Princeton University Press, Princeton, 1974.
    [28] Theor. Popul. Biol., 29 (1986), 38-63.
    [29] J. Differ. Equations, 200 (2004), 245-273.
    [30] J. Differ. Equations, 247 (2009), 866-886.
    [31] Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149-164.
    [32] Theor. Popul. Biol., 47 (1995), 1-17.
    [33] Ecology, 76 (1995), 2270-2277.
    [34] Theor. Popul. Biol., 31 (1987), 1-12.
    [35] Cambridge University Press, Cambridge, 1974.
    [36] Chapman $&$ Hall, New York, 1984.
    [37] J. Differ. Equations, 251 (2011), 1276-1304.
    [38] J. Math. Biol., 62 (2011), 291-331.
    [39] J. Math. Biol., 43 (2001), 268-290.
    [40] J. Differ. Equations, 246 (2009), 1944-1977.
  • This article has been cited by:

    1. Edward A. Rietman, Jacob G. Scott, Jack A. Tuszynski, Giannoula Lakka Klement, Personalized anticancer therapy selection using molecular landscape topology and thermodynamics, 2017, 8, 1949-2553, 18735, 10.18632/oncotarget.12932
    2. Edward A. Rietman, Sophie Taylor, Hava T. Siegelmann, Marco A. Deriu, Marco Cavaglia, Jack A. Tuszynski, Using the Gibbs Function as a Measure of Human Brain Development Trends from Fetal Stage to Advanced Age, 2020, 21, 1422-0067, 1116, 10.3390/ijms21031116
    3. Elizabeth J. Brant, Edward A. Rietman, Giannoula Lakka Klement, Marco Cavaglia, Jack A. Tuszynski, Xu-jie Zhou, Personalized therapy design for systemic lupus erythematosus based on the analysis of protein-protein interaction networks, 2020, 15, 1932-6203, e0226883, 10.1371/journal.pone.0226883
    4. J. James Frost, Kenneth J. Pienta, Donald S. Coffey, Symmetry and symmetry breaking in cancer: a foundational approach to the cancer problem, 2018, 9, 1949-2553, 11429, 10.18632/oncotarget.22939
    5. Edward A. Rietman, John Platig, Jack A. Tuszynski, Giannoula Lakka Klement, Thermodynamic measures of cancer: Gibbs free energy and entropy of protein–protein interactions, 2016, 42, 0092-0606, 339, 10.1007/s10867-016-9410-y
    6. Edward Rietman, Jack A. Tuszynski, 2018, Chapter 8, 978-3-319-74973-0, 139, 10.1007/978-3-319-74974-7_8
    7. Ellen Kure Fischer, Antonio Drago, A molecular pathway analysis stresses the role of inflammation and oxidative stress towards cognition in schizophrenia, 2017, 124, 0300-9564, 765, 10.1007/s00702-017-1730-y
    8. Chang Yu, Edward A. Rietman, Hava T. Siegelmann, Marco Cavaglia, Jack A. Tuszynski, Application of Thermodynamics and Protein–Protein Interaction Network Topology for Discovery of Potential New Treatments for Temporal Lobe Epilepsy, 2021, 11, 2076-3417, 8059, 10.3390/app11178059
    9. Nicolas Carels, Domenico Sgariglia, Marcos Guilherme Vieira Junior, Carlyle Ribeiro Lima, Flávia Raquel Gonçalves Carneiro, Gilberto Ferreira da Silva, Fabricio Alves Barbosa da Silva, Rafaela Scardini, Jack Adam Tuszynski, Cecilia Vianna de Andrade, Ana Carolina Monteiro, Marcel Guimarães Martins, Talita Goulart da Silva, Helen Ferraz, Priscilla Vanessa Finotelli, Tiago Albertini Balbino, José Carlos Pinto, A Strategy Utilizing Protein–Protein Interaction Hubs for the Treatment of Cancer Diseases, 2023, 24, 1422-0067, 16098, 10.3390/ijms242216098
    10. Giulia Pozzati, Jinrui Zhou, Hananel Hazan, Giannoula Lakka Klement, Hava T. Siegelmann, Jack A. Tuszynski, Edward A. Rietman, A Systems Biology Analysis of Chronic Lymphocytic Leukemia, 2024, 4, 2673-7523, 163, 10.3390/onco4030013
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2889) PDF downloads(547) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog