Citation: Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusivepredator-prey system incorporating a prey refuge[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 979-996. doi: 10.3934/mbe.2013.10.979
[1] | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679 |
[2] | Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito . Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model. Mathematical Biosciences and Engineering, 2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233 |
[3] | Tainian Zhang, Zhixue Luo, Hao Zhang . Optimal harvesting for a periodic $ n $-dimensional food chain model with size structure in a polluted environment. Mathematical Biosciences and Engineering, 2022, 19(8): 7481-7503. doi: 10.3934/mbe.2022352 |
[4] | Ya Li, Z. Feng . Dynamics of a plant-herbivore model with toxin-induced functional response. Mathematical Biosciences and Engineering, 2010, 7(1): 149-169. doi: 10.3934/mbe.2010.7.149 |
[5] | Suzanne M. O'Regan, John M. Drake . Finite mixture models of superspreading in epidemics. Mathematical Biosciences and Engineering, 2025, 22(5): 1081-1108. doi: 10.3934/mbe.2025039 |
[6] | Peter W. Bates, Jianing Chen, Mingji Zhang . Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Mathematical Biosciences and Engineering, 2020, 17(4): 3736-3766. doi: 10.3934/mbe.2020210 |
[7] | Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . Finite difference schemes for a structured population model in the space of measures. Mathematical Biosciences and Engineering, 2020, 17(1): 747-775. doi: 10.3934/mbe.2020039 |
[8] | Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . High resolution finite difference schemes for a size structured coagulation-fragmentation model in the space of radon measures. Mathematical Biosciences and Engineering, 2023, 20(7): 11805-11820. doi: 10.3934/mbe.2023525 |
[9] | Z. Jackiewicz, B. Zubik-Kowal, B. Basse . Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences and Engineering, 2009, 6(3): 561-572. doi: 10.3934/mbe.2009.6.561 |
[10] | Yueping Dong, Jianlu Ren, Qihua Huang . Dynamics of a toxin-mediated aquatic population model with delayed toxic responses. Mathematical Biosciences and Engineering, 2020, 17(5): 5907-5924. doi: 10.3934/mbe.2020315 |
[1] | Nonlinear Anal-Real, 11 (2010), 246-252. |
[2] | Bull. Math. Biol., 57 (1995), 63-76. |
[3] | J. Differ. Equations, 203 (2004), 331-364. |
[4] | Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349. |
[5] | Trans. Amer. Math. Soc., 349 (1997), 2443-2475. |
[6] | J. Differ. Equations, 229 (2006), 63-91. |
[7] | Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 95-135. |
[8] | Ecol. Model., 166 (2003), 135-146. |
[9] | Nonlinear Anal-Real, 12 (2011), 2385-2395. |
[10] | Cambridge University Press, Cambridge, 1981. |
[11] | Princeton University Press, Princeton, 1978. |
[12] | J. Anim. Ecol., 42 (1973), 693-726. |
[13] | Am. Nat., 122 (1983), 521-541. |
[14] | Taiwan. J. Math., 9 (2005), 151-173. |
[15] | J. Math. Biol., 42 (2001), 489-506. |
[16] | Appl. Math. Comput., 182 (2006), 672-683. |
[17] | Yale Univ. Press, New Haven, Connecticut, 1976. |
[18] | Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681-691. |
[19] | Nonlinear Anal-Real, 10 (2009), 2558-2573. |
[20] | J. Differ. Equations, 231 (2006), 534-550. |
[21] | Theor. Popul. Biol., 53 (1998), 131-142. |
[22] | J. Math. Biol., 36 (1998), 389-406. |
[23] | J. Math. Biol., 88 (1988), 67-84. |
[24] | Nonlinear Anal.-Real, 14 (2013), 1806-1816. |
[25] | J. Math. Anal. Appl., 371 (2010), 323-340. |
[26] | Math. Biosci., 218 (2009), 73-79. |
[27] | Princeton University Press, Princeton, 1974. |
[28] | Theor. Popul. Biol., 29 (1986), 38-63. |
[29] | J. Differ. Equations, 200 (2004), 245-273. |
[30] | J. Differ. Equations, 247 (2009), 866-886. |
[31] | Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149-164. |
[32] | Theor. Popul. Biol., 47 (1995), 1-17. |
[33] | Ecology, 76 (1995), 2270-2277. |
[34] | Theor. Popul. Biol., 31 (1987), 1-12. |
[35] | Cambridge University Press, Cambridge, 1974. |
[36] | Chapman $&$ Hall, New York, 1984. |
[37] | J. Differ. Equations, 251 (2011), 1276-1304. |
[38] | J. Math. Biol., 62 (2011), 291-331. |
[39] | J. Math. Biol., 43 (2001), 268-290. |
[40] | J. Differ. Equations, 246 (2009), 1944-1977. |
1. | Angela Peace, Paul C Frost, Nicole D Wagner, Michael Danger, Chiara Accolla, Philipp Antczak, Bryan W Brooks, David M Costello, Rebecca A Everett, Kevin B Flores, Christopher M Heggerud, Roxanne Karimi, Yun Kang, Yang Kuang, James H Larson, Teresa Mathews, Gregory D Mayer, Justin N Murdock, Cheryl A Murphy, Roger M Nisbet, Laure Pecquerie, Nathan Pollesch, Erica M Rutter, Kimberly L Schulz, J Thad Scott, Louise Stevenson, Hao Wang, Stoichiometric Ecotoxicology for a Multisubstance World, 2021, 71, 0006-3568, 132, 10.1093/biosci/biaa160 | |
2. | Azmy S. Ackleh, Robert L. Miller, A numerical method for a nonlinear structured population model with an indefinite growth rate coupled with the environment, 2019, 35, 0749-159X, 2348, 10.1002/num.22418 | |
3. | Azmy S. Ackleh, Robert L. Miller, Second-order finite difference approximation for a nonlinear size-structured population model with an indefinite growth rate coupled with the environment, 2021, 58, 0008-0624, 10.1007/s10092-021-00420-x |