Loading [Contrib]/a11y/accessibility-menu.js

Stability and Hopf bifurcation in a diffusivepredator-prey system incorporating a prey refuge

  • Received: 01 February 2013 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 35Q92, 35B32; Secondary: 35B35.

  • A diffusive predator-prey model with Holling type II functionalresponse and the no-flux boundary condition incorporating aconstant prey refuge is considered. Globally asymptoticallystability of the positive equilibrium is obtained. Regarding theconstant number of prey refuge $m$ as a bifurcation parameter, byanalyzing the distribution of the eigenvalues, the existence ofHopf bifurcation is given. Employing the center manifold theoryand normal form method, an algorithm for determining theproperties of the Hopf bifurcation is derived. Some numericalsimulations for illustrating the analysis results are carried out.

    Citation: Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusivepredator-prey system incorporating a prey refuge[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 979-996. doi: 10.3934/mbe.2013.10.979

    Related Papers:

    [1] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [2] Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito . Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model. Mathematical Biosciences and Engineering, 2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233
    [3] Tainian Zhang, Zhixue Luo, Hao Zhang . Optimal harvesting for a periodic $ n $-dimensional food chain model with size structure in a polluted environment. Mathematical Biosciences and Engineering, 2022, 19(8): 7481-7503. doi: 10.3934/mbe.2022352
    [4] Ya Li, Z. Feng . Dynamics of a plant-herbivore model with toxin-induced functional response. Mathematical Biosciences and Engineering, 2010, 7(1): 149-169. doi: 10.3934/mbe.2010.7.149
    [5] Suzanne M. O'Regan, John M. Drake . Finite mixture models of superspreading in epidemics. Mathematical Biosciences and Engineering, 2025, 22(5): 1081-1108. doi: 10.3934/mbe.2025039
    [6] Peter W. Bates, Jianing Chen, Mingji Zhang . Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Mathematical Biosciences and Engineering, 2020, 17(4): 3736-3766. doi: 10.3934/mbe.2020210
    [7] Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . Finite difference schemes for a structured population model in the space of measures. Mathematical Biosciences and Engineering, 2020, 17(1): 747-775. doi: 10.3934/mbe.2020039
    [8] Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . High resolution finite difference schemes for a size structured coagulation-fragmentation model in the space of radon measures. Mathematical Biosciences and Engineering, 2023, 20(7): 11805-11820. doi: 10.3934/mbe.2023525
    [9] Z. Jackiewicz, B. Zubik-Kowal, B. Basse . Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences and Engineering, 2009, 6(3): 561-572. doi: 10.3934/mbe.2009.6.561
    [10] Yueping Dong, Jianlu Ren, Qihua Huang . Dynamics of a toxin-mediated aquatic population model with delayed toxic responses. Mathematical Biosciences and Engineering, 2020, 17(5): 5907-5924. doi: 10.3934/mbe.2020315
  • A diffusive predator-prey model with Holling type II functionalresponse and the no-flux boundary condition incorporating aconstant prey refuge is considered. Globally asymptoticallystability of the positive equilibrium is obtained. Regarding theconstant number of prey refuge $m$ as a bifurcation parameter, byanalyzing the distribution of the eigenvalues, the existence ofHopf bifurcation is given. Employing the center manifold theoryand normal form method, an algorithm for determining theproperties of the Hopf bifurcation is derived. Some numericalsimulations for illustrating the analysis results are carried out.


    [1] Nonlinear Anal-Real, 11 (2010), 246-252.
    [2] Bull. Math. Biol., 57 (1995), 63-76.
    [3] J. Differ. Equations, 203 (2004), 331-364.
    [4] Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.
    [5] Trans. Amer. Math. Soc., 349 (1997), 2443-2475.
    [6] J. Differ. Equations, 229 (2006), 63-91.
    [7] Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 95-135.
    [8] Ecol. Model., 166 (2003), 135-146.
    [9] Nonlinear Anal-Real, 12 (2011), 2385-2395.
    [10] Cambridge University Press, Cambridge, 1981.
    [11] Princeton University Press, Princeton, 1978.
    [12] J. Anim. Ecol., 42 (1973), 693-726.
    [13] Am. Nat., 122 (1983), 521-541.
    [14] Taiwan. J. Math., 9 (2005), 151-173.
    [15] J. Math. Biol., 42 (2001), 489-506.
    [16] Appl. Math. Comput., 182 (2006), 672-683.
    [17] Yale Univ. Press, New Haven, Connecticut, 1976.
    [18] Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681-691.
    [19] Nonlinear Anal-Real, 10 (2009), 2558-2573.
    [20] J. Differ. Equations, 231 (2006), 534-550.
    [21] Theor. Popul. Biol., 53 (1998), 131-142.
    [22] J. Math. Biol., 36 (1998), 389-406.
    [23] J. Math. Biol., 88 (1988), 67-84.
    [24] Nonlinear Anal.-Real, 14 (2013), 1806-1816.
    [25] J. Math. Anal. Appl., 371 (2010), 323-340.
    [26] Math. Biosci., 218 (2009), 73-79.
    [27] Princeton University Press, Princeton, 1974.
    [28] Theor. Popul. Biol., 29 (1986), 38-63.
    [29] J. Differ. Equations, 200 (2004), 245-273.
    [30] J. Differ. Equations, 247 (2009), 866-886.
    [31] Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149-164.
    [32] Theor. Popul. Biol., 47 (1995), 1-17.
    [33] Ecology, 76 (1995), 2270-2277.
    [34] Theor. Popul. Biol., 31 (1987), 1-12.
    [35] Cambridge University Press, Cambridge, 1974.
    [36] Chapman $&$ Hall, New York, 1984.
    [37] J. Differ. Equations, 251 (2011), 1276-1304.
    [38] J. Math. Biol., 62 (2011), 291-331.
    [39] J. Math. Biol., 43 (2001), 268-290.
    [40] J. Differ. Equations, 246 (2009), 1944-1977.
  • This article has been cited by:

    1. Angela Peace, Paul C Frost, Nicole D Wagner, Michael Danger, Chiara Accolla, Philipp Antczak, Bryan W Brooks, David M Costello, Rebecca A Everett, Kevin B Flores, Christopher M Heggerud, Roxanne Karimi, Yun Kang, Yang Kuang, James H Larson, Teresa Mathews, Gregory D Mayer, Justin N Murdock, Cheryl A Murphy, Roger M Nisbet, Laure Pecquerie, Nathan Pollesch, Erica M Rutter, Kimberly L Schulz, J Thad Scott, Louise Stevenson, Hao Wang, Stoichiometric Ecotoxicology for a Multisubstance World, 2021, 71, 0006-3568, 132, 10.1093/biosci/biaa160
    2. Azmy S. Ackleh, Robert L. Miller, A numerical method for a nonlinear structured population model with an indefinite growth rate coupled with the environment, 2019, 35, 0749-159X, 2348, 10.1002/num.22418
    3. Azmy S. Ackleh, Robert L. Miller, Second-order finite difference approximation for a nonlinear size-structured population model with an indefinite growth rate coupled with the environment, 2021, 58, 0008-0624, 10.1007/s10092-021-00420-x
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2806) PDF downloads(547) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog