Mathematical Biosciences and Engineering, 2013, 10(3): 591-608. doi: 10.3934/mbe.2013.10.591.

Primary: 92C40, 92C50; Secondary: 37N25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A partial differential equation model of metastasized prostatic cancer

1. Department of Mathematics, Ohio State University, Columbus, OH 43210
2. Department of Mathematics, Florida State University, Tallahassee, FL 32308

Biochemically failing metastatic prostate cancer is typically treated with androgen ablation. However, due to the emergence of castration-resistant cells that can survive in low androgen concentrations, such therapy eventually fails. Here, we develop a partial differential equation model of the growth and response to treatment of prostate cancer that has metastasized to the bone. Existence and uniqueness results are derived for the resulting free boundary problem. In particular, existence and uniqueness of solutions for all time are proven for the radially symmetric case. Finally, numerical simulations of a tumor growing in 2-dimensions with radial symmetry are carried in order to evaluate the therapeutic potential of different treatment strategies. These simulations are able to reproduce a variety of clinically observed responses to treatment, and suggest treatment strategies that may result in tumor remission, underscoring our model's potential to make a significant contribution in the field of prostate cancer therapeutics.
  Figure/Table
  Supplementary
  Article Metrics

Keywords prostate cancer; Androgen ablation; mathematical model; PSA.; free boundary problem

Citation: Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences and Engineering, 2013, 10(3): 591-608. doi: 10.3934/mbe.2013.10.591

References

  • 1. J. Natl. Cancer. Inst., 91 (1999), 1869-1876.
  • 2. N. Engl. J. Med., 360 (2009), 1310-1319.
  • 3. Clin. Cancer Res., 1 (1995), 473-480.
  • 4. J. Urol., 162 (1999), 897-901.
  • 5. SIAM J. Math. Anal., 35 (2003), 974-986.
  • 6. Cancer Res., 56 (1996), 3091-3102.
  • 7. Semin. Oncol. Nurs., 27 (2011), 241-250.
  • 8. Biol. Direct, 5 (2010), 24-52.
  • 9. Nat. Rev. Cancer, 1 (2001), 34-45.
  • 10. Interface. Free Bound., 10 (2008), 245-262.
  • 11. J. Cancer Res. Clin. Oncol., 132 (2006), S17-S26.
  • 12. N. Engl. J. Med., 324 (1991), 236-245.
  • 13. Prostate Cancer Prostatic Dis., 1 (1998), 289-296.
  • 14. Urology, 45 (1995), 839-844.
  • 15. AJR Am. J. Roentgenol., 189 (2007), 323-328.
  • 16. Endocr. Rev., 25 (2004), 276-308.
  • 17. J. Theor. Biol., 264 (2010), 517-527.
  • 18. J. Nonlinear Sci., 18 (2008), 593-614.
  • 19. Discrete Cont. Dyn.-B, 4 (2004), 187-201.
  • 20. Neoplasia, 6 (2004), 697-704.
  • 21. Proc. Natl. Acad. Sci. USA, 108 (2011), 19701-19706.
  • 22. Discrete Cont. Dyn.-B, in press.
  • 23. Mol. Endocrinol., 4 (1990), 1105-1116.
  • 24. J. Theor. Biol., 257 (2009), 292-302.
  • 25. Endocrinology, 141 (2000), 953-958.
  • 26. AIP Advances, 2 (2012), 011002.
  • 27. Am. J. Physiol. Endocrinol. Metab., 291 (2006), E952-E964.
  • 28. J. Clin. Invest., 98 (1996), 255-263.
  • 29. Cancer Res., 59 (1999), 781-786.
  • 30. Cancer Res., 51 (1991), 3748-3752.
  • 31. Urology, 52 (1998), 44-47.
  • 32. Proc. Natl. Acad. Sci. USA, 93 (1996), 15152-15157.

 

This article has been cited by

  • 1. Javier Baez, Yang Kuang, Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent Androgen Suppression Therapy, Applied Sciences, 2016, 6, 11, 352, 10.3390/app6110352

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved