Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches

  • Received: 01 January 2013 Accepted: 29 June 2018 Published: 01 August 2013
  • MSC : Primary: 92C45, 93E24; Secondary: 34C12, 34D15.

  • The Michaelis-Menten (MM) function is a fractional linear function depending on two positive parameters.These can be estimated by nonlinear or linear least squares methods.The non-linear methods, based directly on the defect of the MM function, can fail and not produce any minimizer.The linear methods always produce a unique minimizer which, however, may not be positive. Here we give sufficient conditions on thedata such that the nonlinear problem has at least one positive minimizer and also conditions for the minimizer of the linearproblem to be positive.
        We discuss in detail the models and equilibrium relations of a classical operator-repressor system,and we extend our approach to the MM problem with leakage and to reversible MM kinetics.Thearrangement of the sufficient conditions exhibits the important role of data that have aconcavity property (chemically feasible data).

    Citation: Karl Peter Hadeler. Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches[J]. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1541-1560. doi: 10.3934/mbe.2013.10.1541

    Related Papers:

    [1] Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325
    [2] H. J. Alsakaji, F. A. Rihan, K. Udhayakumar, F. El Ktaibi . Stochastic tumor-immune interaction model with external treatments and time delays: An optimal control problem. Mathematical Biosciences and Engineering, 2023, 20(11): 19270-19299. doi: 10.3934/mbe.2023852
    [3] Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241
    [4] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [5] G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang . Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072
    [6] Elena Izquierdo-Kulich, José Manuel Nieto-Villar . Morphogenesis of the tumor patterns. Mathematical Biosciences and Engineering, 2008, 5(2): 299-313. doi: 10.3934/mbe.2008.5.299
    [7] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [8] Ge Song, Tianhai Tian, Xinan Zhang . A mathematical model of cell-mediated immune response to tumor. Mathematical Biosciences and Engineering, 2021, 18(1): 373-385. doi: 10.3934/mbe.2021020
    [9] Samantha L Elliott, Emek Kose, Allison L Lewis, Anna E Steinfeld, Elizabeth A Zollinger . Modeling the stem cell hypothesis: Investigating the effects of cancer stem cells and TGF−β on tumor growth. Mathematical Biosciences and Engineering, 2019, 16(6): 7177-7194. doi: 10.3934/mbe.2019360
    [10] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
  • The Michaelis-Menten (MM) function is a fractional linear function depending on two positive parameters.These can be estimated by nonlinear or linear least squares methods.The non-linear methods, based directly on the defect of the MM function, can fail and not produce any minimizer.The linear methods always produce a unique minimizer which, however, may not be positive. Here we give sufficient conditions on thedata such that the nonlinear problem has at least one positive minimizer and also conditions for the minimizer of the linearproblem to be positive.
        We discuss in detail the models and equilibrium relations of a classical operator-repressor system,and we extend our approach to the MM problem with leakage and to reversible MM kinetics.Thearrangement of the sufficient conditions exhibits the important role of data that have aconcavity property (chemically feasible data).


    [1] Biochem. J., 19 (1925), 338-339.
    [2] Math. Meth. Appl. Sci., 30 (2007), 1231-1241.
    [3] in "Handbook of Differential Equations, Vol. 2," Elsevier B. V., Amsterdam, (2006), 239-357
    [4] J. Theoretical Biology, 274 (2011), 84-96.
    [5] Biochem. Z., 49 (1913), 333-369.
    [6] Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 945-961.
    [7] Thermochim. Acta, 31 (1989), 446-477.
    [8] Biophysical Journal, 11 (1971), 11-27.
  • This article has been cited by:

    1. Antonio Barrera, Patricia Román-Román, Francisco Torres-Ruiz, Two Stochastic Differential Equations for Modeling Oscillabolastic-Type Behavior, 2020, 8, 2227-7390, 155, 10.3390/math8020155
    2. Nikhil Pillai, Morgan Craig, Aristeidis Dokoumetzidis, Sorell L. Schwartz, Robert Bies, Immanuel Freedman, Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy, 2018, 139, 00796107, 23, 10.1016/j.pbiomolbio.2018.06.006
    3. George I. Lambrou, 2016, chapter 15, 9781466688285, 315, 10.4018/978-1-4666-8828-5.ch015
    4. Guido Santos, Svetoslav Nikolov, Xin Lai, Martin Eberhardt, Florian S. Dreyer, Sushmita Paul, Gerold Schuler, Julio Vera, Model-based genotype-phenotype mapping used to investigate gene signatures of immune sensitivity and resistance in melanoma micrometastasis, 2016, 6, 2045-2322, 10.1038/srep24967
    5. Antonio Barrera, Patricia Román-Román, Francisco Torres-Ruiz, A hyperbolastic type-I diffusion process: Parameter estimation by means of the firefly algorithm, 2018, 163, 03032647, 11, 10.1016/j.biosystems.2017.11.001
    6. Antonio Barrera, Patricia Román-Román, Francisco Torres-Ruiz, T-Growth Stochastic Model: Simulation and Inference via Metaheuristic Algorithms, 2021, 9, 2227-7390, 959, 10.3390/math9090959
    7. G. Albano, V. Giorno, P. Román-Román, F. Torres-Ruiz, Study of a general growth model, 2022, 107, 10075704, 106100, 10.1016/j.cnsns.2021.106100
    8. Antonio Barrera, Patricia Román-Román, Francisco Torres-Ruiz, Hyperbolastic Models from a Stochastic Differential Equation Point of View, 2021, 9, 2227-7390, 1835, 10.3390/math9161835
    9. Jeferson Miguel Melo Antunes, Valéria Mattos da Rosa, Modelagem Matemática da Imunoterapia para Tumores: Análise Computacional da Terapia Celular Adotiva com Interleucina-2, 2024, 70, 2176-9745, 10.32635/2176-9745.RBC.2024v70n1.4446
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2425) PDF downloads(457) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog