Mathematical Biosciences and Engineering, 2013, 10(4): 1017-1044. doi: 10.3934/mbe.2013.10.1017.

Primary: 92D25, 92D15; Secondary: 37N25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Darwinian dynamics of a juvenile-adult model

1. Department of Mathematics, Interdisciplinary Program in Applied Mathematics, 617 N Santa Rita, University of Arizona, Tucson AZ 85721
2. Department of Ecology and Evolutionary Biology, 1041 E. Lowell St, University of Arizona, Tucson, AZ 85721

The bifurcation that occurs from the extinction equilibrium in a basicdiscrete time, nonlinear juvenile-adult model for semelparous populations,as the inherent net reproductive number $R_{0}$ increases through $1$,exhibits a dynamic dichotomy with two alternatives: an equilibrium withoverlapping generations and a synchronous 2-cycle with non-overlappinggenerations. Which of the two alternatives is stable depends on theintensity of competition between juveniles and adults and on the directionof bifurcation. We study this dynamic dichotomy in an evolutionary settingby assuming adult fertility and juvenile survival are functions of aphenotypic trait $u$ subject to Darwinian evolution. Extinction equilibriafor the Darwinian model exist only at traits $u^{\ast }$ that are criticalpoints of $R_{0}\left( u\right) $. We establish the simultaneous bifurcationof positive equilibria and synchronous 2-cycles as the value of $R_{0}\left(u^{\ast }\right) $ increases through $1$ and describe how the stability ofthese dynamics depend on the direction of bifurcation, the intensity ofbetween-class competition, and the extremal properties of $R_{0}\left(u\right) $ at $u^{\ast }$. These results can be equivalently stated in termsof the inherent population growth rate $r\left( u\right) $.
  Figure/Table
  Supplementary
  Article Metrics

Keywords equilibrium; Structured population dynamics; evolutionary game theory.; bifurcation; dynamicdichotomy; semelparity; Darwinian dynamics; synchronous cycles; juvenile-adult populationmodel

Citation: J. M. Cushing, Simon Maccracken Stump. Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences and Engineering, 2013, 10(4): 1017-1044. doi: 10.3934/mbe.2013.10.1017

References

  • 1. (Coleoptera: Bruchidae), Journal of Animal Ecology 51 (1982), 263-287.
  • 2. Bulletin of Mathematical Biology, 51 (1989), 687-713.
  • 3. Natural Resource Modeling, 8 (1994), 1-37.
  • 4. Journal of Difference Equations and Applications, 9 (2003), 655-670.
  • 5. Mathematical Biosciences and Engineering, 3 (2006), 17-36.
  • 6. Journal of Mathematical Biology, 59 (2009), 75-104.
  • 7. Journal of Biological Dynamics, 5 (2011), 277-297.
  • 8. Journal of Difference Equations and Applications, 18 (2012), 1-26.
  • 9. Journal of Biological Dynamics, 6 (2012), 80-102.
  • 10. Journal of Mathematical Biology, 46 (2003), 95-131.
  • 11. Ph.D Dissertation, University of Utrecht, The Netherlands, 2004.
  • 12. Linear Algebra and its Applications, 398 (2005), 185-243.
  • 13. Journal of Difference Equations and Applications, 11 (2005), 327-335.
  • 14. Journal of Theoretical Biology, 124 (1987), 25-33.
  • 15. Journal of Theoretical Biology, 131 (1988), 389-400.
  • 16. Journal of Mathematical Biology, 4 (1977), 101-147.
  • 17. Journal of Animal Ecology. 45 (1976), 471-486.
  • 18. Applied Mathematical Sciences 156, Springer, New York, 2004.
  • 19. SIAM Journal of Applied Mathematics, 66 (2005), 616-626.
  • 20. Journal of Mathematical Biology. 55 (2007), 781-802.
  • 21. in "Mathematical Modeling of Biological Systems, Volume II" (eds A. Deutsch, R. Bravo de la Parra, R. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky and H. Metz), Birkhäuser, Boston, (2008), 79-90.
  • 22. Journal of Biological Dynamics, 6 (2012), 855-890.
  • 23. Biometrika, 45 (1958), 316-330.
  • 24. Acta Mathematicae Applicatae Sinica, 11 (1995), 160-171.
  • 25. Journal of Theoretical Biology, 144 (1990), 567-571.
  • 26. Journal of Animal Ecology, 43 (1974), 747-770.
  • 27. Journal of Theoretical Biology, 49 (1975), 645-647.
  • 28. Journal of Mathematical Biology, 32 (1994), 329-344.
  • 29. Chapman and Hall, New York, 1992.
  • 30. Theoretical Population Biology, 21 (1982), 255-268.
  • 31. Cambridge University Press, New York, 2005.
  • 32. Journal of Mathematical Biology, 35 (1996), 195-239.
  • 33. Mathematical Biosciences, 146 (1997), 37-62.

 

This article has been cited by

  • 1. Jim M. Cushing, , Applied Analysis in Biological and Physical Sciences, 2016, Chapter 3, 41, 10.1007/978-81-322-3640-5_3
  • 2. J. M. CUSHING, SHANDELLE M. HENSON, JAMES L. HAYWARD, AN EVOLUTIONARY GAME-THEORETIC MODEL OF CANNIBALISM, Natural Resource Modeling, 2015, 28, 4, 497, 10.1111/nrm.12079
  • 3. Amy Veprauskas, J. M. Cushing, Evolutionary dynamics of a multi-trait semelparous model, Discrete and Continuous Dynamical Systems - Series B, 2015, 21, 2, 655, 10.3934/dcdsb.2016.21.655
  • 4. Patrick William Hughes, Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity, Ecology and Evolution, 2017, 7, 20, 8232, 10.1002/ece3.3341
  • 5. Luigi Aldieri, Maxim N. Kotsemir, Concetto Paolo Vinci, The Effects of Collaboration on Research Performance of Universities: an Analysis by Federal District and Scientific Fields in Russia, Journal of the Knowledge Economy, 2018, 10.1007/s13132-018-0570-9
  • 6. J. M. Cushing, , Dynamics, Games and Science, 2015, Chapter 12, 215, 10.1007/978-3-319-16118-1_12
  • 7. J. M. Cushing, Alex P. Farrell, A bifurcation theorem for nonlinear matrix models of population dynamics, Journal of Difference Equations and Applications, 2019, 1, 10.1080/10236198.2019.1699916

Reader Comments

your name: *   your email: *  

Copyright Info: 2013, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved