Research article

Measures of cumulative residual Tsallis entropy for concomitants of generalized order statistics based on the Morgenstern family with application to medical data

  • Published: 15 May 2025
  • Ever since Tsallis introduced Tsallis entropy theory, it has been applied to a wide variety of topics in physics and chemistry, with new applications being discovered annually. The amount of research suggests that the Tsallis entropy concept holds significant potential. This paper introduces weighted cumulative residual Tsallis entropy (WCRTE) and weighted cumulative past Tsallis entropy (WCPTE), as well as their dynamic counterparts for the concomitants of $ m $-generalized order statistics ($ m $-GOSs) derived from the Farlie-Gumbel-Morgenstern bivariate family. The characteristics of the proposed entropy measures were analyzed, demonstrating their ability to characterize the Pareto and exponential distributions. Applications of these findings were presented for order statistics (OSs) systems and record values with uniform, Weibull, and power marginal distributions. Furthermore, the empirical alternatives WCRTE and WCPTE were proposed for calculating new information measures. Two real-world data sets have been evaluated for illustrative purposes, demonstrating satisfactory performance.

    Citation: Ghada Mohammed Mansour, Haroon Mohamed Barakat, Islam Abdullah Husseiny, Magdy Nagy, Ahmed Hamdi Mansi, Metwally Alsayed Alawady. Measures of cumulative residual Tsallis entropy for concomitants of generalized order statistics based on the Morgenstern family with application to medical data[J]. Mathematical Biosciences and Engineering, 2025, 22(6): 1572-1597. doi: 10.3934/mbe.2025058

    Related Papers:

  • Ever since Tsallis introduced Tsallis entropy theory, it has been applied to a wide variety of topics in physics and chemistry, with new applications being discovered annually. The amount of research suggests that the Tsallis entropy concept holds significant potential. This paper introduces weighted cumulative residual Tsallis entropy (WCRTE) and weighted cumulative past Tsallis entropy (WCPTE), as well as their dynamic counterparts for the concomitants of $ m $-generalized order statistics ($ m $-GOSs) derived from the Farlie-Gumbel-Morgenstern bivariate family. The characteristics of the proposed entropy measures were analyzed, demonstrating their ability to characterize the Pareto and exponential distributions. Applications of these findings were presented for order statistics (OSs) systems and record values with uniform, Weibull, and power marginal distributions. Furthermore, the empirical alternatives WCRTE and WCPTE were proposed for calculating new information measures. Two real-world data sets have been evaluated for illustrative purposes, demonstrating satisfactory performance.



    加载中


    [1] D. Morgenstern, Einfache beispiele zweidimensionaler verteilungen, Mitteilingsblatt Math. Stat., 8 (1956), 234–235.
    [2] E. J. Gumbel, Bivariate exponential distributions, J. Amer. Stat. Assoc., 55 (1960), 698–707. https://doi.org/10.1080/01621459.1960.10483368 doi: 10.1080/01621459.1960.10483368
    [3] D. J. G. Farlie, The performance of some correlation coefficients for a general bivariate distribution, Biometrika, 47 (1960), 307–323. https://doi.org/10.2307/2333302 doi: 10.2307/2333302
    [4] N. L. Johnson, S. Kotz, On some generalized Farlie-Gumbel-Morgenstern distributions, Commun. Stat. Theory. Meth., 6 (2007), 485–496. https://doi.org/10.1080/03610927708827509 doi: 10.1080/03610927708827509
    [5] U. Kamps, A concept of generalized order statistics, J. Stat. Plann. Inference, 48 (1995), 1–23. https://doi.org/10.1016/0378-3758(94)00147-N doi: 10.1016/0378-3758(94)00147-N
    [6] H. A. David, H. N. Nagaraja, 18 concomitants of order statistics, Handbook Stat., 16 (1998), 487–513. https://doi.org/10.1016/S0169-7161(98)16020-0 doi: 10.1016/S0169-7161(98)16020-0
    [7] S. S. Yang, General distribution theory of the concomitants of order statistics, Ann. Statist., 5 (1977), 996–1002. https://doi.org/10.1214/aos/1176343954 doi: 10.1214/aos/1176343954
    [8] H. M. Barakat, E. M. Nigm, I. A. Husseiny, Measures of information in order statistics and their concomitants for the single iterated Farlie-Gumbel-Morgenstern bivariate distribution, Math. Pop. Stud., 28 (2020), 154–175. https://doi.org/10.1080/08898480.2020.1767926 doi: 10.1080/08898480.2020.1767926
    [9] M. I. Beg, M. Ahsanullah, Concomitants of generalized order statistics from Farlie-Gumbel-Morgenstern distributions, Statist. Methodol., 5 (2008), 1–20. https://doi.org/10.1016/j.stamet.2007.04.001 doi: 10.1016/j.stamet.2007.04.001
    [10] I. A. Husseiny, M. A. Alawady, H. M. Barakat, M. A. A. Elgawad, Information measures for order statistics and their concomitants from Cambanis bivariate family, Commun. Stat. Theory Methods, 53 (2022), 865–881. https://doi.org/10.1080/03610926.2022.2093909 doi: 10.1080/03610926.2022.2093909
    [11] S. Tahmasebi, A. A. Jafari, M. Ahsanullah, Properties on concomitants of generalized order statistics from a bivariate Rayleigh distribution, Bull. Malays. Math. Sci. Soc., 41 (2018), 355–370. https://doi.org/10.1007/s40840-015-0297-8 doi: 10.1007/s40840-015-0297-8
    [12] H. M. Barakat, I. A. Husseiny, Some information measures in concomitants of generalized order statistics under iterated Farlie-Gumbel-Morgenstern bivariate type, Quaestiones Math., 44 (2021), 581–598. https://doi.org/10.2989/16073606.2020.1729271 doi: 10.2989/16073606.2020.1729271
    [13] M. A. Abd Elgawad, M. A. Alawady, H. M. Barakat, S. Xiong, Concomitants of generalized order statistics from Huang-Kotz Farlie-Gumbel-Morgenstern bivariate distribution: Some information measures, Bull. Malays. Math. Sci. Soc., 43 (2020), 2627–2645. https://doi.org/10.1007/s40840-019-00822-9 doi: 10.1007/s40840-019-00822-9
    [14] M. A. A. Elgawad, H. M. Barakat, M. A. Alawady, Concomitants of generalized order statistics from bivariate Cambanis family: Some information measures, Bull. Iran. Math. Soc., 48 (2022), 563–585. https://doi.org/10.1007/s41980-021-00532-8 doi: 10.1007/s41980-021-00532-8
    [15] M. A. Alawady, H. M. Barakat, M. A. A. Elgawad, Concomitants of generalized order statistics from bivariate Cambanis family of distributions under a general setting, Bull. Malays. Math. Sci. Soc., 44 (2021), 3129–3159. https://doi.org/10.1007/s40840-021-01102-1 doi: 10.1007/s40840-021-01102-1
    [16] M. A. Alawady, H. M. Barakat, S. Xiong, M. A. A. Elgawad, On concomitants of dual generalized order statistics from Bairamov-Kotz-Becki Farlie-Gumbel-Morgenstern bivariate distributions, Asian Eur. Math., 14 (2021), 2150185. https://doi.org/10.1142/S1793557121501850 doi: 10.1142/S1793557121501850
    [17] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [18] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
    [19] A. Anastasiadis, Tsallis entropy, Entropy, 14 (2012), 174–176. https://doi.org/10.3390/e14020174 doi: 10.3390/e14020174
    [20] I. A. Husseiny, M. Nagy, A. H. Mansi, M. A. Alawady, Some Tsallis entropy measures in concomitants of generalized order statistics under iterated FGM bivariate distribution, AIMS Math., 9 (2024), 23268–23290. https://doi:10.3934/math.20241131 doi: 10.3934/math.20241131
    [21] M. Rao, Y. Chen, B. Vemuri, F. Wang, Cumulative residual entropy: A new measure of information, IEEE Trans. Inf. Theory, 50 (2004), 1220–1228. https://doi.org/10.1109/TIT.2004.828057 doi: 10.1109/TIT.2004.828057
    [22] M. M. Sati, N. Gupta, Some characterization results on dynamic cumulative residual Tsallis entropy, J. Probab. Stat., 2015 (2015), 694–203. https://doi.org/10.1155/2015/694203 doi: 10.1155/2015/694203
    [23] G. Rajesh, S. M. Sunoj, Some properties of cumulative Tsallis entropy of order $\alpha$, Stat. Papers, 60 (2019), 933–943. https://doi.org/10.1007/s00362-016-0855-7 doi: 10.1007/s00362-016-0855-7
    [24] A. D. Crescenzo, M. Longobardi, On cumulative entropies, J. Statist. Plan. Inf., 139 (2009), 4072–4087. https://doi.org/10.1016/j.jspi.2009.05.038 doi: 10.1016/j.jspi.2009.05.038
    [25] C. Cali, M. Longobardi, J. Ahmadi, Some properties of cumulative Tsallis entropy, Phys. A Stat. Mech. Appl., 486 (2017), 1012–1021. https://doi.org/10.1016/j.physa.2017.05.063 doi: 10.1016/j.physa.2017.05.063
    [26] S. Chakraborty, B. Pradhan, On weighted cumulative Tsallis residual and past entropy measures, Commun. Stat. Simul. Comput., 52 (2021), 2058–2072. https://doi.org/10.1080/03610918.2021.1897623 doi: 10.1080/03610918.2021.1897623
    [27] A. H. Khammar, S. M. A. Jahanshahi, On weighted cumulative residual Tsallis entropy and its dynamic version, Phys. A Stat. Mech. Appl., 491 (2018), 678–692. https://doi.org/10.1016/j.physa.2017.09.079 doi: 10.1016/j.physa.2017.09.079
    [28] M. Azimbagirad, L. O. M. Junior, Tsallis generalized entropy for Gaussian mixture model parameter estimation on brain segmentation application, Neurosci. Inf., 1 (2021), 100002. https://doi.org/10.1016/j.neuri.2021.100002 doi: 10.1016/j.neuri.2021.100002
    [29] M. Azimbagirad, F. H. Simozo, A. C. S. Senra Filho, L. O. Murta-Junior, Tsallis-entropy segmentation through MRF and Alzheimer anatomic reference for brain magnetic resonance parcellation, Magn. Reson. Imaging, 65 (2020), 136–145. https://doi.org/10.1016/j.mri.2019.11.002 doi: 10.1016/j.mri.2019.11.002
    [30] Z. Almaspoor, A. A. Jafari, S. Tahmasebi, Measures of extropy for concomitants of generalized order statistics in morgenstern family, J. Stat. Theory Appl., 21 (2022), 1–20. https://doi.org/10.1007/s44199-021-00038-6 doi: 10.1007/s44199-021-00038-6
    [31] C. A. McGilchrist, C. W. Aisbett, Regression with frailty in survival analysis, Biometrics, 47 (1991), 461–466. https://doi.org/10.2307/2532138 doi: 10.2307/2532138
    [32] E. M. Almetwally, H. Z. Muhammed, E. S. A. El-Sherpieny, Bivariate Weibull distribution: Properties and different methods of estimation, Ann. Data Sci., 7 (2020), 163–193. https://doi.org/10.1007/s40745-019-00197-5 doi: 10.1007/s40745-019-00197-5
    [33] S. Shoaee, On a new class of bivariate survival distributions based on the model of dependent lives and its generalization, Appl. Appl. Math., 15 (2020), 801–829.
    [34] N. Kumar, A. Dixit, V. Vijay, Estimation of Tsallis entropy for exponentially distributed several populations, preprint, arXiv: 2401.09009. https://doi.org/10.48550/arXiv.2401.09009
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(964) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog