An application of queuing theory to SIS and SEIS epidemic models

  • Received: 01 February 2010 Accepted: 29 June 2018 Published: 01 October 2010
  • MSC : Primary: 92B05; Secondary: 62J27.

  • In this work we consider every individual of a population to be a server whose state can be either busy (infected) or idle (susceptible). This server approach allows to consider a general distribution for the duration of the infectious state, instead of being restricted to exponential distributions. In order to achieve this we first derive new approximations to quasistationary distribution (QSD) of SIS (Susceptible- Infected- Susceptible) and SEIS (Susceptible- Latent- Infected- Susceptible) stochastic epidemic models. We give an expression that relates the basic reproductive number, R0 and the server utilization, ρ.

    Citation: Carlos M. Hernández-Suárez, Carlos Castillo-Chavez, Osval Montesinos López, Karla Hernández-Cuevas. An application of queuing theory to SIS and SEIS epidemic models[J]. Mathematical Biosciences and Engineering, 2010, 7(4): 809-823. doi: 10.3934/mbe.2010.7.809

    Related Papers:

    [1] Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295
    [2] Andreas Widder, Christian Kuehn . Heterogeneous population dynamics and scaling laws near epidemic outbreaks. Mathematical Biosciences and Engineering, 2016, 13(5): 1093-1118. doi: 10.3934/mbe.2016032
    [3] Meici Sun, Qiming Liu . An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks. Mathematical Biosciences and Engineering, 2021, 18(5): 6790-6805. doi: 10.3934/mbe.2021337
    [4] Shanjing Ren . Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1337-1360. doi: 10.3934/mbe.2017069
    [5] Tianfang Hou, Guijie Lan, Sanling Yuan, Tonghua Zhang . Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Mathematical Biosciences and Engineering, 2022, 19(4): 4217-4236. doi: 10.3934/mbe.2022195
    [6] Maoxing Liu, Yuhang Li . Dynamics analysis of an SVEIR epidemic model in a patchy environment. Mathematical Biosciences and Engineering, 2023, 20(9): 16962-16977. doi: 10.3934/mbe.2023756
    [7] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [8] Jianquan Li, Zhien Ma, Fred Brauer . Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences and Engineering, 2007, 4(4): 699-710. doi: 10.3934/mbe.2007.4.699
    [9] Liqiong Pu, Zhigui Lin . A diffusive SIS epidemic model in a heterogeneous and periodically evolvingenvironment. Mathematical Biosciences and Engineering, 2019, 16(4): 3094-3110. doi: 10.3934/mbe.2019153
    [10] Shuang-Hong Ma, Hai-Feng Huo . Global dynamics for a multi-group alcoholism model with public health education and alcoholism age. Mathematical Biosciences and Engineering, 2019, 16(3): 1683-1708. doi: 10.3934/mbe.2019080
  • In this work we consider every individual of a population to be a server whose state can be either busy (infected) or idle (susceptible). This server approach allows to consider a general distribution for the duration of the infectious state, instead of being restricted to exponential distributions. In order to achieve this we first derive new approximations to quasistationary distribution (QSD) of SIS (Susceptible- Infected- Susceptible) and SEIS (Susceptible- Latent- Infected- Susceptible) stochastic epidemic models. We give an expression that relates the basic reproductive number, R0 and the server utilization, ρ.


  • This article has been cited by:

    1. Aresh Dadlani, Muthukrishnan Senthil Kumar, Kiseon Kim, Faryad Darabi Sahneh, 2016, Transient analysis of a resource-limited recovery policy for epidemics: A retrial queueing approach, 978-1-5090-1540-5, 187, 10.1109/SARNOF.2016.7846752
    2. Akshay Krishna Murali, Enhao Liu, Theodore T. Allen, 2019, Discrete Event Simulation of Cyber Maintenance Policies According to Nested Birth and Death Processes, 978-1-7281-3283-9, 774, 10.1109/WSC40007.2019.9004820
    3. David F. Anderson, Germán A. Enciso, Matthew D. Johnston, Stochastic analysis of biochemical reaction networks with absolute concentration robustness, 2014, 11, 1742-5689, 20130943, 10.1098/rsif.2013.0943
    4. Claude Lefèvre, Philippe Picard, On the outcome of epidemics with detections, 2017, 54, 0021-9002, 890, 10.1017/jpr.2017.40
    5. Zeynep Gökçe İşlier, Refik Güllü, Wolfgang Hörmann, An exact and implementable computation of the final outbreak size distribution under Erlang distributed infectious period, 2020, 325, 00255564, 108363, 10.1016/j.mbs.2020.108363
    6. Felix Köhler-Rieper, Claudius H. F. Röhl, Enrico De Micheli, A novel deterministic forecast model for the Covid-19 epidemic based on a single ordinary integro-differential equation, 2020, 135, 2190-5444, 10.1140/epjp/s13360-020-00608-0
    7. Shi Chen, Suzanne Lenhart, Judy D Day, Chihoon Lee, Michael Dulin, Cristina Lanzas, Pathogen transfer through environment–host contact: an agent-based queueing theoretic framework, 2018, 35, 1477-8599, 409, 10.1093/imammb/dqx014
    8. Jaroslav Ilnytskyi, Piotr Pikuta, Hryhoriy Ilnytskyi, Stationary states and spatial patterning in the cellular automaton SEIS epidemiology model, 2018, 509, 03784371, 241, 10.1016/j.physa.2018.06.001
    9. Cristina Elena Mazilu, Radu Dobrescu, 2020, Increasing Autonomy In Health Care Management With Teal Organizations, 978-1-7281-8803-4, 1, 10.1109/EHB50910.2020.9280172
    10. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, 2013, 10, 1551-0018, 10.3934/mbe.2013.10.5i
    11. Kalyanee Devi, Rohit Tripathi, Optimal seed node selection method for LTIS model, 2022, 34, 1532-0626, 10.1002/cpe.6982
    12. Fahima Ouicher, Tewfik Kernane, Quasi-stationary probability distribution for the SIR epidemic model, 2022, 15, 1793-5245, 10.1142/S1793524521500844
    13. Yuhan Li, Ziyan Zeng, Minyu Feng, Jurgen Kurths, Protection Degree and Migration in the Stochastic SIRS Model: A Queueing System Perspective, 2022, 69, 1549-8328, 771, 10.1109/TCSI.2021.3119978
    14. Arzad A. Kherani, Nomaan A. Kherani, Rishi R. Singh, Amit K. Dhar, D. Manjunath, 2021, Chapter 42, 978-3-030-86652-5, 576, 10.1007/978-3-030-86653-2_42
    15. Kalyanee Devi, Rohit Tripathi, ASN: A method of optimality for seed identification in the influence diffusion process, 2023, 618, 03784371, 128710, 10.1016/j.physa.2023.128710
    16. Kalyanee Devi, Rohit Tripathi, Influential users identification under the non-progressive LTIRS model, 2024, 0219-1377, 10.1007/s10115-024-02084-9
    17. Priyanka Victor, S. Yuvarani, Preethi Victor, P. Rajadurai, 2024, 3180, 0094-243X, 020015, 10.1063/5.0224346
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4105) PDF downloads(897) Cited by(17)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog