Mathematical Biosciences and Engineering, 2009, 6(4): 701-718. doi: 10.3934/mbe.2009.6.701.

Primary: 47A10, 92D15; Secondary: 35B35.

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Stability of equilibria of a predator-prey model of phenotype evolution

1. Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona

We consider a selection mutation predator-prey model for the distribution of individuals with respect to an evolutionary trait. Local stability of the equilibria of this model is studied using the linearized stability principle and taking advantage of the (assumed) asymptotic stability of the equilibria of the resident population adopting an evolutionarily stable strategy.
  Article Metrics

Keywords Weinstein Aronszajn determinant; Asymptotic stability; evolutionarily stable strategy.

Citation: Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences and Engineering, 2009, 6(4): 701-718. doi: 10.3934/mbe.2009.6.701


This article has been cited by

  • 1. King-Yeung Lam, Stability of Dirac concentrations in an integro-PDE model for evolution of dispersal, Calculus of Variations and Partial Differential Equations, 2017, 56, 3, 10.1007/s00526-017-1157-1
  • 2. Azmy S. Ackleh, Baoling Ma, Paul L. Salceanu, Persistence and global stability in a selection–mutation size-structured model, Journal of Biological Dynamics, 2011, 5, 5, 436, 10.1080/17513758.2010.538729

Reader Comments

your name: *   your email: *  

Copyright Info: 2009, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved