Mathematical Biosciences and Engineering, 2009, 6(2): 209-237. doi: 10.3934/mbe.2009.6.209.

Primary: 92D25, 92D30; Secondary: 92C60.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Mathematical modelling of tuberculosis epidemics

1. School of Science and Technology, Universidad Metropolitana, San Juan 00928-1150
2. School of Human Evolution and Social Change, PO Box 872402 Tempe, AZ 85287-2402

The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic models are explored in the context of the transmission dynamics of tuberculosis. The focus is on three types of models: a standard incidence homogeneous mixing model, a non-homogeneous mixing model that incorporates 'household' contacts, and an age-structured model. The models are parameterized using demographic and epidemiological data and the patterns generated from these models are compared. Furthermore, the effects of population growth, stochasticity, clustering of contacts, and age structure on disease dynamics are explored. This framework is used to asses the possible causes for the observed historical decline of tuberculosis notifications.
  Figure/Table
  Supplementary
  Article Metrics

Keywords demography.; stochastic models; tuberculosis; non-autonomous systems

Citation: Juan Pablo Aparicio, Carlos Castillo-Chávez. Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences and Engineering, 2009, 6(2): 209-237. doi: 10.3934/mbe.2009.6.209

 

This article has been cited by

  • 1. Julien Arino, Iman A. Soliman, , Mathematical and Computational Modeling, 2015, 99, 10.1002/9781118853887.ch5
  • 2. James M. Trauer, Justin T. Denholm, Emma S. McBryde, Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-pacific, Journal of Theoretical Biology, 2014, 358, 74, 10.1016/j.jtbi.2014.05.023
  • 3. Marilyn Ronoh, Rym Jaroudi, Patrick Fotso, Victor Kamdoum, Nancy Matendechere, Josephine Wairimu, Rose Auma, Jonnes Lugoye, A Mathematical Model of Tuberculosis with Drug Resistance Effects, Applied Mathematics, 2016, 07, 12, 1303, 10.4236/am.2016.712115
  • 4. Cagri Ozcaglar, Amina Shabbeer, Scott L. Vandenberg, Bülent Yener, Kristin P. Bennett, Epidemiological models of Mycobacterium tuberculosis complex infections, Mathematical Biosciences, 2012, 236, 2, 77, 10.1016/j.mbs.2012.02.003
  • 5. N. H. Sweilam, S. M. AL-Mekhlafi, On the optimal control for fractional multi-strain TB model, Optimal Control Applications and Methods, 2016, 37, 6, 1355, 10.1002/oca.2247
  • 6. Swati DebRoy, Olivia Prosper, Austin Mishoe, Anuj Mubayi, Challenges in modeling complexity of neglected tropical diseases: a review of dynamics of visceral leishmaniasis in resource limited settings, Emerging Themes in Epidemiology, 2017, 14, 1, 10.1186/s12982-017-0065-3
  • 7. A. O. Egonmwan, D. Okuonghae, Analysis of a mathematical model for tuberculosis with diagnosis, Journal of Applied Mathematics and Computing, 2018, 10.1007/s12190-018-1172-1
  • 8. EMMA G. THOMAS, HANNAH E. BARRINGTON, KAMALINI M. LOKUGE, GEOFFRY N. MERCER, MODELLING THE SPREAD OF TUBERCULOSIS, INCLUDING DRUG RESISTANCE AND HIV: A CASE STUDY IN PAPUA NEW GUINEA’S WESTERN PROVINCE, The ANZIAM Journal, 2010, 52, 01, 26, 10.1017/S1446181111000587
  • 9. Stefan Panaiotov, Massimo Amicosante, Dynamics of the laboratory results in patients with pulmonary tuberculosis, Diagnostic Microbiology and Infectious Disease, 2010, 67, 4, 327, 10.1016/j.diagmicrobio.2010.03.002
  • 10. Matt Begun, Anthony T. Newall, Guy B. Marks, James G. Wood, Michael George Roberts, Contact Tracing of Tuberculosis: A Systematic Review of Transmission Modelling Studies, PLoS ONE, 2013, 8, 9, e72470, 10.1371/journal.pone.0072470
  • 11. Nasser H. Sweilam, Seham M. AL-Mekhlafi, Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives, Journal of Advanced Research, 2016, 7, 2, 271, 10.1016/j.jare.2015.06.004
  • 12. Daniel Okuonghae, Bernard O. Ikhimwin, Dynamics of a Mathematical Model for Tuberculosis with Variability in Susceptibility and Disease Progressions Due to Difference in Awareness Level, Frontiers in Microbiology, 2016, 6, 10.3389/fmicb.2015.01530
  • 13. C. S. Pepperell, J. M. Granka, D. C. Alexander, M. A. Behr, L. Chui, J. Gordon, J. L. Guthrie, F. B. Jamieson, D. Langlois-Klassen, R. Long, D. Nguyen, W. Wobeser, M. W. Feldman, Dispersal of Mycobacterium tuberculosis via the Canadian fur trade, Proceedings of the National Academy of Sciences, 2011, 108, 16, 6526, 10.1073/pnas.1016708108
  • 14. Mauricio Herrera, Paul Bosch, Manuel Nájera, Ximena Aguilera, Modeling the Spread of Tuberculosis in Semiclosed Communities, Computational and Mathematical Methods in Medicine, 2013, 2013, 1, 10.1155/2013/648291
  • 15. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, Mathematical Biosciences and Engineering, 2013, 10, 5/6, 10.3934/mbe.2013.10.5i
  • 16. Romain Ragonnet, James M. Trauer, Nick Scott, Michael T. Meehan, Justin T. Denholm, Emma S. McBryde, Optimally capturing latency dynamics in models of tuberculosis transmission, Epidemics, 2017, 21, 39, 10.1016/j.epidem.2017.06.002
  • 17. Fred Brauer, Yanyu Xiao, Seyed M. Moghadas, Drug resistance in an age-of-infection model, Mathematical Population Studies, 2017, 24, 1, 64, 10.1080/08898480.2015.1054216
  • 18. Sungim Whang, Sunhwa Choi, Eunok Jung, A dynamic model for tuberculosis transmission and optimal treatment strategies in South Korea, Journal of Theoretical Biology, 2011, 279, 1, 120, 10.1016/j.jtbi.2011.03.009
  • 19. Soyoung Kim, Aurelio A. de los Reyes, Eunok Jung, Mathematical model and intervention strategies for mitigating tuberculosis in the Philippines, Journal of Theoretical Biology, 2018, 443, 100, 10.1016/j.jtbi.2018.01.026
  • 20. Sunhwa Choi, Eunok Jung, Optimal Tuberculosis Prevention and Control Strategy from a Mathematical Model Based on Real Data, Bulletin of Mathematical Biology, 2014, 76, 7, 1566, 10.1007/s11538-014-9962-6
  • 21. N.H. Sweilam, I.A. Soliman, S.M. Al-Mekhlafi, Nonstandard finite difference method for solving the multi-strain TB model, Journal of the Egyptian Mathematical Society, 2017, 25, 2, 129, 10.1016/j.joems.2016.10.004
  • 22. Muhammad Rifki Taufik, Dwi Lestari, Tri Wijayanti Septiarini, Mathematical Model for Vaccinated Tuberculosis Disease with VEIT Model, International Journal of Modeling and Optimization, 2015, 5, 3, 192, 10.7763/IJMO.2015.V5.460
  • 23. Henri Dabernat, Catherine Thèves, Caroline Bouakaze, Dariya Nikolaeva, Christine Keyser, Igor Mokrousov, Annie Géraut, Sylvie Duchesne, Patrice Gérard, Anatoly N. Alexeev, Eric Crubézy, Bertrand Ludes, David Caramelli, Tuberculosis Epidemiology and Selection in an Autochthonous Siberian Population from the 16th-19th Century, PLoS ONE, 2014, 9, 2, e89877, 10.1371/journal.pone.0089877
  • 24. Joao Sollari Lopes, Paula Rodrigues, Suani TR Pinho, Roberto FS Andrade, Raquel Duarte, M Gabriela M Gomes, Interpreting measures of tuberculosis transmission: a case study on the Portuguese population, BMC Infectious Diseases, 2014, 14, 1, 10.1186/1471-2334-14-340
  • 25. Sarah F. Ackley, Fengchen Liu, Travis C. Porco, Caitlin S. Pepperell, Modeling historical tuberculosis epidemics among Canadian First Nations: effects of malnutrition and genetic variation, PeerJ, 2015, 3, e1237, 10.7717/peerj.1237
  • 26. Hossein Kheiri, Baojun Song, Fereshteh Nazari, Carlos Castillo-Chavez, Azizeh Jabbari, A two-strain TB model with multiple latent stages, Mathematical Biosciences and Engineering, 2016, 13, 4, 741, 10.3934/mbe.2016017
  • 27. Siyu Liu, Yong Li, Yingjie Bi, Qingdao Huang, Mixed vaccination strategy for the control of tuberculosis: A case study in China, Mathematical Biosciences and Engineering, 2016, 14, 3, 695, 10.3934/mbe.2017039
  • 28. Pierre Nouvellet, Zulma M. Cucunubá, Sébastien Gourbière, , Mathematical Models for Neglected Tropical Diseases: Essential Tools for Control and Elimination, Part A, 2015, 135, 10.1016/bs.apar.2014.12.004
  • 29. Nello Blaser, Cindy Zahnd, Sabine Hermans, Luisa Salazar-Vizcaya, Janne Estill, Carl Morrow, Matthias Egger, Olivia Keiser, Robin Wood, Tuberculosis in Cape Town: An age-structured transmission model, Epidemics, 2016, 14, 54, 10.1016/j.epidem.2015.10.001
  • 30. Rui Xu, Xiaohong Tian, Fengqin Zhang, Global dynamics of a tuberculosis transmission model with age of infection and incomplete treatment, Advances in Difference Equations, 2017, 2017, 1, 10.1186/s13662-017-1294-z
  • 31. M. Maliyoni, P. M. M. Mwamtobe, S. D. Hove-Musekwa, J. M. Tchuenche, Modelling the Role of Diagnosis, Treatment, and Health Education on Multidrug-Resistant Tuberculosis Dynamics, ISRN Biomathematics, 2012, 2012, 1, 10.5402/2012/459829
  • 32. Chang Gong, Jennifer J. Linderman, Denise Kirschner, A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes, Mathematical Biosciences and Engineering, 2015, 12, 3, 625, 10.3934/mbe.2015.12.625
  • 33. D Lestari, A Dhoruri, E R Sari, An epidemic model of tuberculosis with vaccine control in Yogyakarta region Indonesia, Journal of Physics: Conference Series, 2018, 1132, 012022, 10.1088/1742-6596/1132/1/012022
  • 34. Dongxue Yan, Hui Cao, The global dynamics for an age-structured tuberculosis transmission model with the exponential progression rate, Applied Mathematical Modelling, 2019, 10.1016/j.apm.2019.07.003
  • 35. Marcin Choiński, Mariusz Bodzioch, Urszula Foryś, Simple criss-cross model of epidemic for heterogeneous populations, Communications in Nonlinear Science and Numerical Simulation, 2019, 104920, 10.1016/j.cnsns.2019.104920
  • 36. Ayinla Ally Yeketi, Wan Ainun Mior Othman, M. A. Omar Awang, The role of vaccination in curbing tuberculosis epidemic, Modeling Earth Systems and Environment, 2019, 10.1007/s40808-019-00623-w
  • 37. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, , Mathematical Models in Epidemiology, 2019, Chapter 7, 249, 10.1007/978-1-4939-9828-9_7
  • 38. Yayehirad A. Melsew, Adeshina I. Adekunle, Allen C. Cheng, Emma S. McBryde, Romain Ragonnet, James M. Trauer, Heterogeneous infectiousness in mathematical models of tuberculosis: a systematic review, Epidemics, 2019, 100374, 10.1016/j.epidem.2019.100374
  • 39. Rui Xu, Junyuan Yang, Xiaohong Tian, Jiazhe Lin, Global dynamics of a tuberculosis model with fast and slow progression and age-dependent latency and infection, Journal of Biological Dynamics, 2019, 13, 1, 675, 10.1080/17513758.2019.1683628
  • 40. D Lestari, E R Sari, H Arifah, Dynamics of a mathematical model of cancer cells with chemotherapy, Journal of Physics: Conference Series, 2019, 1320, 012026, 10.1088/1742-6596/1320/1/012026
  • 41. RUI XU, NING BAI, XIAOHONG TIAN, GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS WITH AGE-DEPENDENT LATENCY AND ACTIVE INFECTION, Journal of Biological Systems, 2019, 27, 04, 503, 10.1142/S0218339019500207

Reader Comments

your name: *   your email: *  

Copyright Info: 2009, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved