Optimal control of vaccine distribution in a rabies metapopulation model

  • Received: 01 July 2007 Accepted: 29 June 2018 Published: 01 March 2008
  • MSC : 92D30.

  • We consider an SIR metapopulation model for the spread of rabies in raccoons. This system of ordinary differential equations considers subpop- ulations connected by movement. Vaccine for raccoons is distributed through food baits. We apply optimal control theory to find the best timing for dis- tribution of vaccine in each of the linked subpopulations across the landscape. This strategy is chosen to limit the disease optimally by making the number of infections as small as possible while accounting for the cost of vaccination.

    Citation: Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model[J]. Mathematical Biosciences and Engineering, 2008, 5(2): 219-238. doi: 10.3934/mbe.2008.5.219

    Related Papers:

    [1] Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir . Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model. Mathematical Biosciences and Engineering, 2024, 21(6): 6372-6392. doi: 10.3934/mbe.2024278
    [2] Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469
    [3] Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298
    [4] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
    [5] Giulia Luebben, Gilberto González-Parra, Bishop Cervantes . Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA. Mathematical Biosciences and Engineering, 2023, 20(6): 10828-10865. doi: 10.3934/mbe.2023481
    [6] Rama Seck, Diène Ngom, Benjamin Ivorra, Ángel M. Ramos . An optimal control model to design strategies for reducing the spread of the Ebola virus disease. Mathematical Biosciences and Engineering, 2022, 19(2): 1746-1774. doi: 10.3934/mbe.2022082
    [7] Bevina D. Handari, Dipo Aldila, Bunga O. Dewi, Hanna Rosuliyana, Sarbaz H. A. Khosnaw . Analysis of yellow fever prevention strategy from the perspective of mathematical model and cost-effectiveness analysis. Mathematical Biosciences and Engineering, 2022, 19(2): 1786-1824. doi: 10.3934/mbe.2022084
    [8] Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925
    [9] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [10] Manoj Kumar, Syed Abbas, Abdessamad Tridane . Optimal control and stability analysis of an age-structured SEIRV model with imperfect vaccination. Mathematical Biosciences and Engineering, 2023, 20(8): 14438-14463. doi: 10.3934/mbe.2023646
  • We consider an SIR metapopulation model for the spread of rabies in raccoons. This system of ordinary differential equations considers subpop- ulations connected by movement. Vaccine for raccoons is distributed through food baits. We apply optimal control theory to find the best timing for dis- tribution of vaccine in each of the linked subpopulations across the landscape. This strategy is chosen to limit the disease optimally by making the number of infections as small as possible while accounting for the cost of vaccination.


  • This article has been cited by:

    1. Kundan Kandhway, Joy Kuri, Optimal control of information epidemics modeled as Maki Thompson rumors, 2014, 19, 10075704, 4135, 10.1016/j.cnsns.2014.04.022
    2. Yun Feng, Li Ding, Ping Hu, Epidemic spreading on random surfer networks with optimal interaction radius, 2018, 56, 10075704, 344, 10.1016/j.cnsns.2017.06.031
    3. Kundan Kandhway, Joy Kuri, Optimal Resource Allocation Over Time and Degree Classes for Maximizing Information Dissemination in Social Networks, 2016, 24, 1063-6692, 3204, 10.1109/TNET.2015.2512541
    4. Adil El Alami Laaroussi, Mostafa Rachik, On the Regional Control of a Reaction–Diffusion System SIR, 2020, 82, 0092-8240, 10.1007/s11538-019-00673-2
    5. Hawthorne L. Beyer, Katie Hampson, Tiziana Lembo, Sarah Cleaveland, Magai Kaare, Daniel T. Haydon, Metapopulation dynamics of rabies and the efficacy of vaccination, 2011, 278, 0962-8452, 2182, 10.1098/rspb.2010.2312
    6. Kundan Kandhway, Joy Kuri, 2014, Accelerating information diffusion in social networks under the Susceptible-Infected-Susceptible epidemic model, 978-1-4799-3080-7, 1515, 10.1109/ICACCI.2014.6968621
    7. Eli P. Fenichel, Richard D. Horan, Graham J. Hickling, Management of infectious wildlife diseases: bridging conventional and bioeconomic approaches, 2010, 20, 1051-0761, 903, 10.1890/09-0446.1
    8. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study, 2012, 9, 1551-0018, 539, 10.3934/mbe.2012.9.539
    9. Chairat Modnak, A model of cholera transmission with hyperinfectivity and its optimal vaccination control, 2017, 10, 1793-5245, 1750084, 10.1142/S179352451750084X
    10. A simple analysis of vaccination strategies for rubella, 2011, 8, 1551-0018, 677, 10.3934/mbe.2011.8.677
    11. Scott M. Duke-Sylvester, Eli N. Perencevich, Jon P. Furuno, Leslie A. Real, Holly Gaff, Advancing Epidemiological Science Through Computational Modeling: A Review with Novel Examples, 2008, 45, 0003-455X, 385, 10.5735/086.045.0503
    12. Bruno Buonomo, Piero Manfredi, Alberto d’Onofrio, Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases, 2019, 78, 0303-6812, 1089, 10.1007/s00285-018-1303-1
    13. Erin E. Rees, Bruce A. Pond, Rowland R. Tinline, Denise Bélanger, Hamish McCallum, Modelling the effect of landscape heterogeneity on the efficacy of vaccination for wildlife infectious disease control, 2013, 50, 00218901, 881, 10.1111/1365-2664.12101
    14. Tiago Yuzo Miyaoka, Suzanne Lenhart, João F. C. A. Meyer, Optimal control of vaccination in a vector-borne reaction–diffusion model applied to Zika virus, 2019, 79, 0303-6812, 1077, 10.1007/s00285-019-01390-z
    15. Rachael Miller Neilan, Suzanne Lenhart, Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons, 2011, 378, 0022247X, 603, 10.1016/j.jmaa.2010.12.035
    16. Luca Bolzoni, Valentina Tessoni, Maria Groppi, Giulio A. De Leo, React or wait: which optimal culling strategy to control infectious diseases in wildlife, 2014, 69, 0303-6812, 1001, 10.1007/s00285-013-0726-y
    17. Richard D. Horan, Eli P. Fenichel, Christopher A. Wolf, Benjamin M. Gramig, Managing Infectious Animal Disease Systems, 2010, 2, 1941-1340, 101, 10.1146/annurev.resource.012809.103859
    18. Eli P. Fenichel, Richard D. Horan, Graham J. Hickling, Bioeconomic management of invasive vector-borne diseases, 2010, 12, 1387-3547, 2877, 10.1007/s10530-010-9734-7
    19. Kathryn Huyvaert, Robin Russell, Kelly Patyk, Meggan Craft, Paul Cross, M. Garner, Michael Martin, Pauline Nol, Daniel Walsh, Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals, 2018, 5, 2306-7381, 92, 10.3390/vetsci5040092
    20. Paula Federico, Louis J. Gross, Suzanne Lenhart, Dan Ryan, Optimal Control in Individual-Based Models: Implications from Aggregated Methods, 2013, 181, 0003-0147, 64, 10.1086/668594
    21. Bruno Buonomo, Deborah Lacitignola, Cruz Vargas-De-León, Qualitative analysis and optimal control of an epidemic model with vaccination and treatment, 2014, 100, 03784754, 88, 10.1016/j.matcom.2013.11.005
    22. Brittany Stephenson, Cristina Lanzas, Suzanne Lenhart, Judy Day, Optimal control of vaccination rate in an epidemiological model of Clostridium difficile transmission, 2017, 75, 0303-6812, 1693, 10.1007/s00285-017-1133-6
    23. 2009, 9780429190025, 299, 10.1201/9781420059861-19
    24. Matthew H. Holden, Stephen P. Ellner, Human judgment vs. quantitative models for the management of ecological resources, 2016, 26, 10510761, 1553, 10.1890/15-1295
    25. Sunmi Lee, Okbun Baek, Luis Melara, Resource Allocation in Two-Patch Epidemic Model with State-Dependent Dispersal Behaviors Using Optimal Control, 2020, 8, 2227-9717, 1087, 10.3390/pr8091087
    26. Tim Clayton, Scott Duke-Sylvester, Louis J. Gross, Suzanne Lenhart, Leslie A. Real, Optimal control of a rabies epidemic model with a birth pulse, 2010, 4, 1751-3758, 43, 10.1080/17513750902935216
    27. Vijay G. Panjeti, Leslie A. Real, 2011, 79, 9780123870407, 377, 10.1016/B978-0-12-387040-7.00018-4
    28. Shigui Ruan, Spatiotemporal epidemic models for rabies among animals, 2017, 2, 24680427, 277, 10.1016/j.idm.2017.06.001
    29. Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak, Analyzing transmission dynamics of cholera with public health interventions, 2015, 264, 00255564, 38, 10.1016/j.mbs.2015.03.006
    30. Kundan Kandhway, Joy Kuri, Campaigning in Heterogeneous Social Networks: Optimal Control of SI Information Epidemics, 2016, 24, 1063-6692, 383, 10.1109/TNET.2014.2361801
    31. Kundan Kandhway, Joy Kuri, How to run a campaign: Optimal control of SIS and SIR information epidemics, 2014, 231, 00963003, 79, 10.1016/j.amc.2013.12.164
    32. Sunmi Lee, Carlos Castillo-Chavez, The role of residence times in two-patch dengue transmission dynamics and optimal strategies, 2015, 374, 00225193, 152, 10.1016/j.jtbi.2015.03.005
    33. Fakhteh Saadatniaki, Usman A. Khan, 2018, Product adoption in heterogeneous networks: An epidemiological perspective, 978-1-5386-9218-9, 1043, 10.1109/ACSSC.2018.8645221
    34. Masud M A, Md Hamidul Islam, Muhaiminul Islam Adnan, Chunyoung Oh, Dog Rabies in Dhaka, Bangladesh, and Implications for Control, 2020, 8, 2227-9717, 1513, 10.3390/pr8111513
    35. Degang Xu, Xiyang Xu, Yongfang Xie, Chunhua Yang, Optimal control of an SIVRS epidemic spreading model with virus variation based on complex networks, 2017, 48, 10075704, 200, 10.1016/j.cnsns.2016.12.025
    36. Arunabh Saxena, Bhumesh Kumar, Anmol Gupta, Neeraja Sahasrabudhe, Sharayu Moharir, 2021, Influencing Opinions of Heterogeneous Populations over Finite Time Horizons, 978-1-7281-9127-0, 474, 10.1109/COMSNETS51098.2021.9352905
    37. Kundan Kandhway, Joy Kuri, Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks, 2017, 47, 2168-2216, 1099, 10.1109/TSMC.2016.2531690
    38. Adison Thongtha, Chairat Modnak, Optimal COVID-19 epidemic strategy with vaccination control and infection prevention measures in Thailand, 2022, 7, 24680427, 835, 10.1016/j.idm.2022.11.002
    39. Adison Thongtha, Chairat Modnak, A mathematical modeling of rabies with vaccination and culling, 2021, 14, 1793-5245, 2150039, 10.1142/S179352452150039X
    40. Jagtap Kalyani Devendra, Kundan Kandhway, 2022, Optimal Lockdown to Manage an Epidemic, 978-1-6654-2104-1, 784, 10.1109/COMSNETS53615.2022.9668495
    41. Julien Arino, 2022, Chapter 2, 978-3-030-85052-4, 25, 10.1007/978-3-030-85053-1_2
    42. E.-H. Essoufi, A. Zafrar, Boundary optimal control of time–space SIR model with nonlinear Robin boundary condition, 2022, 10, 2195-268X, 1279, 10.1007/s40435-021-00886-1
    43. Rinlapas Wattanasirikosone, Chairat Modnak, Analysing transmission dynamics of HIV/AIDS with optimal control strategy and its controlled state, 2022, 16, 1751-3758, 499, 10.1080/17513758.2022.2096934
    44. Omar Elamraoui, El Hassan Essoufi, Abderrahim Zafrar, Spatio-Temporal SIR Model with Robin Boundary Condition and Automatic Lockdown Policy, 2023, 9, 2349-5103, 10.1007/s40819-022-01482-3
    45. Rahat Zarin, Iftikhar Ahmed, Poom Kumam, Anwar Zeb, Anwarud Din, Fractional modeling and optimal control analysis of rabies virus under the convex incidence rate, 2021, 28, 22113797, 104665, 10.1016/j.rinp.2021.104665
    46. Julie C. Blackwood, Mykhaylo M. Malakhov, Junyan Duan, Jordan J. Pellett, Ishan S. Phadke, Suzanne Lenhart, Charles Sims, Katriona Shea, Governance structure affects transboundary disease management under alternative objectives, 2021, 21, 1471-2458, 10.1186/s12889-021-11797-3
    47. Sijin Wu, Hao Sun, Yancheng Lu, Susan Grant-Muller, Lili Yang, 2021, Initial COVID-19 Vaccine Distribution Policy Optimisation, 9781450387392, 108, 10.1145/3510249.3510270
    48. Esteban A. Hernandez-Vargas, Alejandro H. Gonzalez, Carolyn L. Beck, Xiaoqi Bi, Francesca Cala Campana, Giulia Giordano, 2022, Modelling and Control of Epidemics Across Scales, 978-1-6654-6761-2, 4963, 10.1109/CDC51059.2022.9992380
    49. E. Joe Moran, Nicolas Lecomte, Patrick Leighton, Amy Hurford, Understanding rabies persistence in low-density fox populations, 2021, 28, 1195-6860, 301, 10.1080/11956860.2021.1916215
    50. Anmol Gupta, Sharayu Moharir, Neeraja Sahasrabudhe, Influencing Opinion Dynamics in Networks with Limited Interaction, 2021, 54, 24058963, 684, 10.1016/j.ifacol.2021.06.130
    51. Pan Yang, Junbo Jia, Wei Shi, Jianwen Feng, Xinchu Fu, Stability analysis and optimal control in an epidemic model on directed complex networks with nonlinear incidence, 2023, 10075704, 107206, 10.1016/j.cnsns.2023.107206
    52. Morganne Igoe, Renato Casagrandi, Marino Gatto, Christopher M. Hoover, Lorenzo Mari, Calistus N. Ngonghala, Justin V. Remais, James N. Sanchirico, Susanne H. Sokolow, Suzanne Lenhart, Giulio de Leo, Reframing Optimal Control Problems for Infectious Disease Management in Low-Income Countries, 2023, 85, 0092-8240, 10.1007/s11538-023-01137-4
    53. Behnam Vahdani, Mehrdad Mohammadi, Simon Thevenin, Michel Gendreau, Alexandre Dolgui, Patrick Meyer, Fair-Split Distribution of Multi-dose Vaccines with Prioritized Age Groups and Dynamic Demand: The case study of COVID-19, 2023, 03772217, 10.1016/j.ejor.2023.03.032
    54. Emily Howerton, Kyle Dahlin, Christina J. Edholm, Lindsey Fox, Margaret Reynolds, Brandon Hollingsworth, George Lytle, Melody Walker, Julie Blackwood, Suzanne Lenhart, The effect of governance structures on optimal control of two-patch epidemic models, 2023, 87, 0303-6812, 10.1007/s00285-023-02001-8
    55. Jingwen Zhang, Xinwei Wang, Lili Rong, Qiuwei Pan, Chunbing Bao, Qinyue Zheng, Planning for the optimal vaccination sequence in the context of a population-stratified model, 2024, 00380121, 101847, 10.1016/j.seps.2024.101847
    56. Evan H. Campbell Grant, Brittany A. Mosher, Riley F. Bernard, Alexander D. Wright, Robin E. Russell, Matching decision support modeling frameworks to disease emergence stages and associated management objectives, 2024, 2578-4854, 10.1111/csp2.13085
    57. Calvin Tadmon, Arnaud Feukouo Fossi, Berge Tsanou, A two–strain avian–human influenza model with environmental transmission: Stability analysis and optimal control strategies, 2024, 10075704, 107981, 10.1016/j.cnsns.2024.107981
    58. Annalise Hassan, Zoe A. Tapp, Dan K. Tran, Jan Rychtář, Dewey Taylor, Mathematical model of rabies vaccination in the United States, 2024, 00405809, 10.1016/j.tpb.2024.03.004
    59. Sudipa Chauhan, Payal Rana, Kuldeep Chaudhary, Teekam Singh, Economic evaluation of two-Strain covid-19 compartmental epidemic model with pharmaceutical and non-pharmaceutical interventions and spatio-temporal patterns, 2024, 26667207, 100444, 10.1016/j.rico.2024.100444
    60. M. Soledad Aronna, Lucas Machado Moschen, Optimal vaccination strategies on networks and in metropolitan areas, 2024, 24680427, 10.1016/j.idm.2024.06.007
    61. Yang Liu, Kashin Sugishita, Shinya Hanaoka, Vaccination and transportation intervention strategies for effective pandemic control, 2024, 0967070X, 10.1016/j.tranpol.2024.07.021
    62. Mousa Tayseer Jafar, Lu-Xing Yang, Gang Li, Qingyi Zhu, Chenquan Gan, Xiaofan Yang, Malware containment with immediate response in IoT networks: An optimal control approach, 2024, 01403664, 107951, 10.1016/j.comcom.2024.107951
    63. Wafa F. Alfwzan, Ali Raza, Nauman Ahmed, Amr Elsonbaty, Muhammad Rafiq, Waleed Adel, Ammar Alsinai, Nonstandard Computational and Bifurcation Analysis of the Rabies Epidemic Model, 2024, 2024, 2314-4629, 10.1155/2024/3909089
    64. Habtamu Ayalew Engida, Demeke Fisseha, Malaria and leptospirosis co-infection: A mathematical model analysis with optimal control and cost-effectiveness analysis, 2025, 24682276, e02517, 10.1016/j.sciaf.2024.e02517
    65. Raghu Arghal, Harvey Rubin, Shirin Saeedi Bidokhti, Saswati Sarkar, Osmond Ekwebelem, Protect or prevent? A practicable framework for the dilemmas of COVID-19 vaccine prioritization, 2025, 20, 1932-6203, e0316294, 10.1371/journal.pone.0316294
    66. A.U.S. Adikari, H.C.Y. Jayathunga, 2024, Optimal Allocation of Vaccines in a Meta-Population to Control COVID-19 in Sri Lanka, 979-8-3315-1142-5, 1, 10.1109/ICITR64794.2024.10857741
    67. Lucas M. Moschen, M. Soledad Aronna, Bang-Bang Optimal Control of Vaccination in Metapopulation Epidemics With Linear Cost Structures, 2025, 9, 2475-1456, 492, 10.1109/LCSYS.2025.3575227
    68. Mona Fani, Milad Zandi, 2025, Chapter 9, 978-3-031-77910-7, 235, 10.1007/978-3-031-77911-4_9
    69. Ateq Alsaadi, Fractional modeling of vector-borne disease dynamics using ABC operators and neural networks, 2025, 10, 2473-6988, 15841, 10.3934/math.2025710
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3438) PDF downloads(585) Cited by(69)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog