1.
|
Kundan Kandhway, Joy Kuri,
Optimal control of information epidemics modeled as Maki Thompson rumors,
2014,
19,
10075704,
4135,
10.1016/j.cnsns.2014.04.022
|
|
2.
|
Yun Feng, Li Ding, Ping Hu,
Epidemic spreading on random surfer networks with optimal interaction radius,
2018,
56,
10075704,
344,
10.1016/j.cnsns.2017.06.031
|
|
3.
|
Kundan Kandhway, Joy Kuri,
Optimal Resource Allocation Over Time and Degree Classes for Maximizing Information Dissemination in Social Networks,
2016,
24,
1063-6692,
3204,
10.1109/TNET.2015.2512541
|
|
4.
|
Adil El Alami Laaroussi, Mostafa Rachik,
On the Regional Control of a Reaction–Diffusion System SIR,
2020,
82,
0092-8240,
10.1007/s11538-019-00673-2
|
|
5.
|
Hawthorne L. Beyer, Katie Hampson, Tiziana Lembo, Sarah Cleaveland, Magai Kaare, Daniel T. Haydon,
Metapopulation dynamics of rabies and the efficacy of vaccination,
2011,
278,
0962-8452,
2182,
10.1098/rspb.2010.2312
|
|
6.
|
Kundan Kandhway, Joy Kuri,
2014,
Accelerating information diffusion in social networks under the Susceptible-Infected-Susceptible epidemic model,
978-1-4799-3080-7,
1515,
10.1109/ICACCI.2014.6968621
|
|
7.
|
Eli P. Fenichel, Richard D. Horan, Graham J. Hickling,
Management of infectious wildlife diseases: bridging conventional and bioeconomic approaches,
2010,
20,
1051-0761,
903,
10.1890/09-0446.1
|
|
8.
|
Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study,
2012,
9,
1551-0018,
539,
10.3934/mbe.2012.9.539
|
|
9.
|
Chairat Modnak,
A model of cholera transmission with hyperinfectivity and its optimal vaccination control,
2017,
10,
1793-5245,
1750084,
10.1142/S179352451750084X
|
|
10.
|
A simple analysis of vaccination strategies for rubella,
2011,
8,
1551-0018,
677,
10.3934/mbe.2011.8.677
|
|
11.
|
Scott M. Duke-Sylvester, Eli N. Perencevich, Jon P. Furuno, Leslie A. Real, Holly Gaff,
Advancing Epidemiological Science Through Computational Modeling: A Review with Novel Examples,
2008,
45,
0003-455X,
385,
10.5735/086.045.0503
|
|
12.
|
Bruno Buonomo, Piero Manfredi, Alberto d’Onofrio,
Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases,
2019,
78,
0303-6812,
1089,
10.1007/s00285-018-1303-1
|
|
13.
|
Erin E. Rees, Bruce A. Pond, Rowland R. Tinline, Denise Bélanger, Hamish McCallum,
Modelling the effect of landscape heterogeneity on the efficacy of vaccination for wildlife infectious disease control,
2013,
50,
00218901,
881,
10.1111/1365-2664.12101
|
|
14.
|
Tiago Yuzo Miyaoka, Suzanne Lenhart, João F. C. A. Meyer,
Optimal control of vaccination in a vector-borne reaction–diffusion model applied to Zika virus,
2019,
79,
0303-6812,
1077,
10.1007/s00285-019-01390-z
|
|
15.
|
Rachael Miller Neilan, Suzanne Lenhart,
Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons,
2011,
378,
0022247X,
603,
10.1016/j.jmaa.2010.12.035
|
|
16.
|
Luca Bolzoni, Valentina Tessoni, Maria Groppi, Giulio A. De Leo,
React or wait: which optimal culling strategy to control infectious diseases in wildlife,
2014,
69,
0303-6812,
1001,
10.1007/s00285-013-0726-y
|
|
17.
|
Richard D. Horan, Eli P. Fenichel, Christopher A. Wolf, Benjamin M. Gramig,
Managing Infectious Animal Disease Systems,
2010,
2,
1941-1340,
101,
10.1146/annurev.resource.012809.103859
|
|
18.
|
Eli P. Fenichel, Richard D. Horan, Graham J. Hickling,
Bioeconomic management of invasive vector-borne diseases,
2010,
12,
1387-3547,
2877,
10.1007/s10530-010-9734-7
|
|
19.
|
Kathryn Huyvaert, Robin Russell, Kelly Patyk, Meggan Craft, Paul Cross, M. Garner, Michael Martin, Pauline Nol, Daniel Walsh,
Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals,
2018,
5,
2306-7381,
92,
10.3390/vetsci5040092
|
|
20.
|
Paula Federico, Louis J. Gross, Suzanne Lenhart, Dan Ryan,
Optimal Control in Individual-Based Models: Implications from Aggregated Methods,
2013,
181,
0003-0147,
64,
10.1086/668594
|
|
21.
|
Bruno Buonomo, Deborah Lacitignola, Cruz Vargas-De-León,
Qualitative analysis and optimal control of an epidemic model with vaccination and treatment,
2014,
100,
03784754,
88,
10.1016/j.matcom.2013.11.005
|
|
22.
|
Brittany Stephenson, Cristina Lanzas, Suzanne Lenhart, Judy Day,
Optimal control of vaccination rate in an epidemiological model of Clostridium difficile transmission,
2017,
75,
0303-6812,
1693,
10.1007/s00285-017-1133-6
|
|
23.
|
2009,
9780429190025,
299,
10.1201/9781420059861-19
|
|
24.
|
Matthew H. Holden, Stephen P. Ellner,
Human judgment vs. quantitative models for the management of ecological resources,
2016,
26,
10510761,
1553,
10.1890/15-1295
|
|
25.
|
Sunmi Lee, Okbun Baek, Luis Melara,
Resource Allocation in Two-Patch Epidemic Model with State-Dependent Dispersal Behaviors Using Optimal Control,
2020,
8,
2227-9717,
1087,
10.3390/pr8091087
|
|
26.
|
Tim Clayton, Scott Duke-Sylvester, Louis J. Gross, Suzanne Lenhart, Leslie A. Real,
Optimal control of a rabies epidemic model with a birth pulse,
2010,
4,
1751-3758,
43,
10.1080/17513750902935216
|
|
27.
|
Vijay G. Panjeti, Leslie A. Real,
2011,
79,
9780123870407,
377,
10.1016/B978-0-12-387040-7.00018-4
|
|
28.
|
Shigui Ruan,
Spatiotemporal epidemic models for rabies among animals,
2017,
2,
24680427,
277,
10.1016/j.idm.2017.06.001
|
|
29.
|
Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak,
Analyzing transmission dynamics of cholera with public health interventions,
2015,
264,
00255564,
38,
10.1016/j.mbs.2015.03.006
|
|
30.
|
Kundan Kandhway, Joy Kuri,
Campaigning in Heterogeneous Social Networks: Optimal Control of SI Information Epidemics,
2016,
24,
1063-6692,
383,
10.1109/TNET.2014.2361801
|
|
31.
|
Kundan Kandhway, Joy Kuri,
How to run a campaign: Optimal control of SIS and SIR information epidemics,
2014,
231,
00963003,
79,
10.1016/j.amc.2013.12.164
|
|
32.
|
Sunmi Lee, Carlos Castillo-Chavez,
The role of residence times in two-patch dengue transmission dynamics and optimal strategies,
2015,
374,
00225193,
152,
10.1016/j.jtbi.2015.03.005
|
|
33.
|
Fakhteh Saadatniaki, Usman A. Khan,
2018,
Product adoption in heterogeneous networks: An epidemiological perspective,
978-1-5386-9218-9,
1043,
10.1109/ACSSC.2018.8645221
|
|
34.
|
Masud M A, Md Hamidul Islam, Muhaiminul Islam Adnan, Chunyoung Oh,
Dog Rabies in Dhaka, Bangladesh, and Implications for Control,
2020,
8,
2227-9717,
1513,
10.3390/pr8111513
|
|
35.
|
Degang Xu, Xiyang Xu, Yongfang Xie, Chunhua Yang,
Optimal control of an SIVRS epidemic spreading model with virus variation based on complex networks,
2017,
48,
10075704,
200,
10.1016/j.cnsns.2016.12.025
|
|
36.
|
Arunabh Saxena, Bhumesh Kumar, Anmol Gupta, Neeraja Sahasrabudhe, Sharayu Moharir,
2021,
Influencing Opinions of Heterogeneous Populations over Finite Time Horizons,
978-1-7281-9127-0,
474,
10.1109/COMSNETS51098.2021.9352905
|
|
37.
|
Kundan Kandhway, Joy Kuri,
Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks,
2017,
47,
2168-2216,
1099,
10.1109/TSMC.2016.2531690
|
|
38.
|
Adison Thongtha, Chairat Modnak,
Optimal COVID-19 epidemic strategy with vaccination control and infection prevention measures in Thailand,
2022,
7,
24680427,
835,
10.1016/j.idm.2022.11.002
|
|
39.
|
Adison Thongtha, Chairat Modnak,
A mathematical modeling of rabies with vaccination and culling,
2021,
14,
1793-5245,
2150039,
10.1142/S179352452150039X
|
|
40.
|
Jagtap Kalyani Devendra, Kundan Kandhway,
2022,
Optimal Lockdown to Manage an Epidemic,
978-1-6654-2104-1,
784,
10.1109/COMSNETS53615.2022.9668495
|
|
41.
|
Julien Arino,
2022,
Chapter 2,
978-3-030-85052-4,
25,
10.1007/978-3-030-85053-1_2
|
|
42.
|
E.-H. Essoufi, A. Zafrar,
Boundary optimal control of time–space SIR model with nonlinear Robin boundary condition,
2022,
10,
2195-268X,
1279,
10.1007/s40435-021-00886-1
|
|
43.
|
Rinlapas Wattanasirikosone, Chairat Modnak,
Analysing transmission dynamics of HIV/AIDS with optimal control strategy and its controlled state,
2022,
16,
1751-3758,
499,
10.1080/17513758.2022.2096934
|
|
44.
|
Omar Elamraoui, El Hassan Essoufi, Abderrahim Zafrar,
Spatio-Temporal SIR Model with Robin Boundary Condition and Automatic Lockdown Policy,
2023,
9,
2349-5103,
10.1007/s40819-022-01482-3
|
|
45.
|
Rahat Zarin, Iftikhar Ahmed, Poom Kumam, Anwar Zeb, Anwarud Din,
Fractional modeling and optimal control analysis of rabies virus under the convex incidence rate,
2021,
28,
22113797,
104665,
10.1016/j.rinp.2021.104665
|
|
46.
|
Julie C. Blackwood, Mykhaylo M. Malakhov, Junyan Duan, Jordan J. Pellett, Ishan S. Phadke, Suzanne Lenhart, Charles Sims, Katriona Shea,
Governance structure affects transboundary disease management under alternative objectives,
2021,
21,
1471-2458,
10.1186/s12889-021-11797-3
|
|
47.
|
Sijin Wu, Hao Sun, Yancheng Lu, Susan Grant-Muller, Lili Yang,
2021,
Initial COVID-19 Vaccine Distribution Policy Optimisation,
9781450387392,
108,
10.1145/3510249.3510270
|
|
48.
|
Esteban A. Hernandez-Vargas, Alejandro H. Gonzalez, Carolyn L. Beck, Xiaoqi Bi, Francesca Cala Campana, Giulia Giordano,
2022,
Modelling and Control of Epidemics Across Scales,
978-1-6654-6761-2,
4963,
10.1109/CDC51059.2022.9992380
|
|
49.
|
E. Joe Moran, Nicolas Lecomte, Patrick Leighton, Amy Hurford,
Understanding rabies persistence in low-density fox populations,
2021,
28,
1195-6860,
301,
10.1080/11956860.2021.1916215
|
|
50.
|
Anmol Gupta, Sharayu Moharir, Neeraja Sahasrabudhe,
Influencing Opinion Dynamics in Networks with Limited Interaction,
2021,
54,
24058963,
684,
10.1016/j.ifacol.2021.06.130
|
|
51.
|
Pan Yang, Junbo Jia, Wei Shi, Jianwen Feng, Xinchu Fu,
Stability analysis and optimal control in an epidemic model on directed complex networks with nonlinear incidence,
2023,
10075704,
107206,
10.1016/j.cnsns.2023.107206
|
|
52.
|
Morganne Igoe, Renato Casagrandi, Marino Gatto, Christopher M. Hoover, Lorenzo Mari, Calistus N. Ngonghala, Justin V. Remais, James N. Sanchirico, Susanne H. Sokolow, Suzanne Lenhart, Giulio de Leo,
Reframing Optimal Control Problems for Infectious Disease Management in Low-Income Countries,
2023,
85,
0092-8240,
10.1007/s11538-023-01137-4
|
|
53.
|
Behnam Vahdani, Mehrdad Mohammadi, Simon Thevenin, Michel Gendreau, Alexandre Dolgui, Patrick Meyer,
Fair-Split Distribution of Multi-dose Vaccines with Prioritized Age Groups and Dynamic Demand: The case study of COVID-19,
2023,
03772217,
10.1016/j.ejor.2023.03.032
|
|
54.
|
Emily Howerton, Kyle Dahlin, Christina J. Edholm, Lindsey Fox, Margaret Reynolds, Brandon Hollingsworth, George Lytle, Melody Walker, Julie Blackwood, Suzanne Lenhart,
The effect of governance structures on optimal control of two-patch epidemic models,
2023,
87,
0303-6812,
10.1007/s00285-023-02001-8
|
|
55.
|
Jingwen Zhang, Xinwei Wang, Lili Rong, Qiuwei Pan, Chunbing Bao, Qinyue Zheng,
Planning for the optimal vaccination sequence in the context of a population-stratified model,
2024,
00380121,
101847,
10.1016/j.seps.2024.101847
|
|
56.
|
Evan H. Campbell Grant, Brittany A. Mosher, Riley F. Bernard, Alexander D. Wright, Robin E. Russell,
Matching decision support modeling frameworks to disease emergence stages and associated management objectives,
2024,
2578-4854,
10.1111/csp2.13085
|
|
57.
|
Calvin Tadmon, Arnaud Feukouo Fossi, Berge Tsanou,
A two–strain avian–human influenza model with environmental transmission: Stability analysis and optimal control strategies,
2024,
10075704,
107981,
10.1016/j.cnsns.2024.107981
|
|
58.
|
Annalise Hassan, Zoe A. Tapp, Dan K. Tran, Jan Rychtář, Dewey Taylor,
Mathematical model of rabies vaccination in the United States,
2024,
00405809,
10.1016/j.tpb.2024.03.004
|
|
59.
|
Sudipa Chauhan, Payal Rana, Kuldeep Chaudhary, Teekam Singh,
Economic evaluation of two-Strain covid-19 compartmental epidemic model with pharmaceutical and non-pharmaceutical interventions and spatio-temporal patterns,
2024,
26667207,
100444,
10.1016/j.rico.2024.100444
|
|
60.
|
M. Soledad Aronna, Lucas Machado Moschen,
Optimal vaccination strategies on networks and in metropolitan areas,
2024,
24680427,
10.1016/j.idm.2024.06.007
|
|
61.
|
Yang Liu, Kashin Sugishita, Shinya Hanaoka,
Vaccination and transportation intervention strategies for effective pandemic control,
2024,
0967070X,
10.1016/j.tranpol.2024.07.021
|
|
62.
|
Mousa Tayseer Jafar, Lu-Xing Yang, Gang Li, Qingyi Zhu, Chenquan Gan, Xiaofan Yang,
Malware containment with immediate response in IoT networks: An optimal control approach,
2024,
01403664,
107951,
10.1016/j.comcom.2024.107951
|
|
63.
|
Wafa F. Alfwzan, Ali Raza, Nauman Ahmed, Amr Elsonbaty, Muhammad Rafiq, Waleed Adel, Ammar Alsinai,
Nonstandard Computational and Bifurcation Analysis of the Rabies Epidemic Model,
2024,
2024,
2314-4629,
10.1155/2024/3909089
|
|
64.
|
Habtamu Ayalew Engida, Demeke Fisseha,
Malaria and leptospirosis co-infection: A mathematical model analysis with optimal control and cost-effectiveness analysis,
2025,
24682276,
e02517,
10.1016/j.sciaf.2024.e02517
|
|
65.
|
Raghu Arghal, Harvey Rubin, Shirin Saeedi Bidokhti, Saswati Sarkar, Osmond Ekwebelem,
Protect or prevent? A practicable framework for the dilemmas of COVID-19 vaccine prioritization,
2025,
20,
1932-6203,
e0316294,
10.1371/journal.pone.0316294
|
|
66.
|
A.U.S. Adikari, H.C.Y. Jayathunga,
2024,
Optimal Allocation of Vaccines in a Meta-Population to Control COVID-19 in Sri Lanka,
979-8-3315-1142-5,
1,
10.1109/ICITR64794.2024.10857741
|
|
67.
|
Lucas M. Moschen, M. Soledad Aronna,
Bang-Bang Optimal Control of Vaccination in Metapopulation Epidemics With Linear Cost Structures,
2025,
9,
2475-1456,
492,
10.1109/LCSYS.2025.3575227
|
|
68.
|
Mona Fani, Milad Zandi,
2025,
Chapter 9,
978-3-031-77910-7,
235,
10.1007/978-3-031-77911-4_9
|
|
69.
|
Ateq Alsaadi,
Fractional modeling of vector-borne disease dynamics using ABC operators and neural networks,
2025,
10,
2473-6988,
15841,
10.3934/math.2025710
|
|