Mathematical Biosciences and Engineering, 2007, 4(3): 373-402. doi: 10.3934/mbe.2007.4.373.

60J20, 34A34, 49Q12, 92D30.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Stochastic and deterministic models for agricultural production networks

1. Department of Statistics, University of North Carolina, Hill, NC
2. Center for Research in Scientific Computation and Department of Mathematics, North Carolina State University, Raleigh, NC
3. National Institute of Statistical Sciences, Research Triangle Park, NC
4. Department of Mathematics and Statistics, University of Louisville, KY
5. Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC

   

An approach to modeling the impact of disturbances in an agricultural production network is presented. A stochastic model and its approximate deterministic model for averages over sample paths of the stochastic system are developed. Simulations, sensitivity and generalized sensitivity analyses are given. Finally, it is shown how diseases may be introduced into the network and corresponding simulations are discussed.
  Figure/Table
  Supplementary
  Article Metrics

Keywords stochastic and deterministic models; sensitivity and generalized sensitivity functions; foot-and-mouth disease.; agricultural production networks

Citation: P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks. Mathematical Biosciences and Engineering, 2007, 4(3): 373-402. doi: 10.3934/mbe.2007.4.373

 

This article has been cited by

  • 1. Amy D. Hagerman, Bruce A. McCarl, Jianhong Mu, , Wiley Handbook of Science and Technology for Homeland Security, 2010, 10.1002/9780470087923.hhs696
  • 2. S. Pant, B. Fabrèges, J-F. Gerbeau, I. E. Vignon-Clementel, A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis, International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 12, 1614, 10.1002/cnm.2692
  • 3. H. T. Banks, Sava Dediu, Stacey L. Ernstberger, Franz Kappel, Generalized sensitivities and optimal experimental design, Journal of Inverse and Ill-posed Problems, 2010, 18, 1, 10.1515/jiip.2010.002
  • 4. H.T. Banks, Kathleen Holm, Nathan C. Wanner, Ariel Cintrón-Arias, Grace M. Kepler, Jeffrey D. Wetherington, A mathematical model for the first-pass dynamics of antibiotics acting on the cardiovascular system, Mathematical and Computer Modelling, 2009, 50, 7-8, 959, 10.1016/j.mcm.2009.02.007
  • 5. H. T. Banks, S. Dediu, S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, Journal of Inverse and Ill-posed Problems, 2007, 15, 7, 10.1515/jiip.2007.038
  • 6. H.T. Banks, Jared Catenacci, Shuhua Hu, Stochastic vs. Deterministic Models for Systems with Delays, IFAC Proceedings Volumes, 2013, 46, 26, 61, 10.3182/20130925-3-FR-4043.00022
  • 7. Chloe Audebert, Petru Bucur, Mohamed Bekheit, Eric Vibert, Irene E. Vignon-Clementel, Jean-Frédéric Gerbeau, Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling, Computer Methods in Applied Mechanics and Engineering, 2017, 314, 102, 10.1016/j.cma.2016.07.009
  • 8. Sanjay Pant, Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems, Journal of The Royal Society Interface, 2018, 15, 142, 20170871, 10.1098/rsif.2017.0871
  • 9. Chloe Audebert, Irene E. Vignon-Clementel, Model and methods to assess hepatic function from indocyanine green fluorescence dynamical measurements of liver tissue, European Journal of Pharmaceutical Sciences, 2018, 115, 304, 10.1016/j.ejps.2018.01.008
  • 10. Kathryn Link, Kaitlyn Gayvert, Brandi Canter, Anna Broido, Michele Joyner, Shuhua Hu, H. Thomas Banks, A comparison of computational efficiencies of stochastic algorithms in terms of two infection models, Mathematical Biosciences and Engineering, 2012, 9, 3, 487, 10.3934/mbe.2012.9.487
  • 11. H. T. Banks, M. Davidian, Shuhua Hu, Grace M. Kepler, E. S. Rosenberg, Modelling HIV immune response and validation with clinical data, Journal of Biological Dynamics, 2008, 2, 4, 357, 10.1080/17513750701813184
  • 12. Tejas Ghadiyali, Kalpesh Lad, Jayesh Dhodiya, , ICT Based Innovations, 2018, Chapter 6, 51, 10.1007/978-981-10-6602-3_6
  • 13. Andrea Franceschetti, Andrea Pugliese, Dmitri Breda, Multiple endemic states in age-structured $SIR$ epidemic models, Mathematical Biosciences and Engineering, 2012, 9, 3, 577, 10.3934/mbe.2012.9.577
  • 14. H. T. Banks, Jared Catenacci, Shuhua Hu, A Comparison of Stochastic Systems with Different Types of Delays, Stochastic Analysis and Applications, 2013, 31, 6, 913, 10.1080/07362994.2013.806217
  • 15. H.Thomas Banks, Shuhua Hu, Nonlinear stochastic Markov processes and modeling uncertainty in populations, Mathematical Biosciences and Engineering, 2011, 9, 1, 1, 10.3934/mbe.2012.9.1
  • 16. Mohammad Munir, Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test, Mathematical Biosciences, 2018, 300, 14, 10.1016/j.mbs.2018.03.014
  • 17. H. Thomas Banks, Marie Davidian, John R. Samuels, Karyn L. Sutton, , Mathematical and Statistical Estimation Approaches in Epidemiology, 2009, Chapter 11, 249, 10.1007/978-90-481-2313-1_11
  • 18. Jose Faro, Bernardo von Haeften, Rui Gardner, Emilio Faro, A Sensitivity Analysis Comparison of Three Models for the Dynamics of Germinal Centers, Frontiers in Immunology, 2019, 10, 10.3389/fimmu.2019.02038

Reader Comments

your name: *   your email: *  

Copyright Info: 2007, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved