Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Subthreshold coexistence of strains: the impact of vaccination and mutation

1. Department of Mathematics, University of Florida, Gainesville, FL 32611-8105
2. Dipartimento di Matematica, Università di Trento, 38050 Povo (Trento)
3. Department of Mathematics, Xinyang Normal University, Henan 464000, P.R.

We consider a model for a disease with two competing strains and vaccination. The vaccine provides complete protection against one of the strains (strain 2) but only partial protection against the other (strain 1). The partial protection leads to existence of subthreshold equilibria of strain 1. If the first strain mutates into the second, there are subthreshold coexistence equilibria when both vaccine-dependent reproduction numbers are below one. Thus, a vaccine that is specific toward the second strain and that, in absence of other strains, should be able to eliminate the second strain by reducing its reproduction number below one, cannot do so because it provides only partial protection to another strain that mutates into the second strain.
  Figure/Table
  Supplementary
  Article Metrics

Keywords latent stage; coexistence; strongly subthreshold coexistence; vaccine enhanced pathogen polymorphism. ; multiple coexistence equilibria; multiple endemic equilibria; mutation; backward bifurcation; latent-stage progression age structure; alternating stability; vaccination

Citation: Maia Martcheva, Mimmo Iannelli, Xue-Zhi Li. Subthreshold coexistence of strains: the impact of vaccination and mutation. Mathematical Biosciences and Engineering, 2007, 4(2): 287-317. doi: 10.3934/mbe.2007.4.287

 

This article has been cited by

  • 1. Xue-Zhi Li, Xi-Chao Duan, Mini Ghosh, Xiu-Ying Ruan, Pathogen coexistence induced by saturating contact rates, Nonlinear Analysis: Real World Applications, 2009, 10, 5, 3298, 10.1016/j.nonrwa.2008.10.038
  • 2. C. P. Bhunu, W. Garira, Z. Mukandavire, Modeling HIV/AIDS and Tuberculosis Coinfection, Bulletin of Mathematical Biology, 2009, 71, 7, 1745, 10.1007/s11538-009-9423-9
  • 3. Junyuan Yang, Chun-Hsien Li, Dynamics of a competing two-strain SIS epidemic model on complex networks with a saturating incidence rate, Journal of Physics A: Mathematical and Theoretical, 2016, 49, 21, 215601, 10.1088/1751-8113/49/21/215601
  • 4. D. Breda, O. Diekmann, W. F. de Graaf, A. Pugliese, R. Vermiglio, On the formulation of epidemic models (an appraisal of Kermack and McKendrick), Journal of Biological Dynamics, 2012, 6, sup2, 103, 10.1080/17513758.2012.716454
  • 5. Zhipeng Qiu, Qingkai Kong, Xuezhi Li, Maia Martcheva, The vector–host epidemic model with multiple strains in a patchy environment, Journal of Mathematical Analysis and Applications, 2013, 405, 1, 12, 10.1016/j.jmaa.2013.03.042
  • 6. Xuezhi Li, Zhipeng Qiu, Yanxia Dang, Competitive exclusion in an infection-age structured vector-host epidemic model, Mathematical Biosciences and Engineering, 2017, 14, 4, 901, 10.3934/mbe.2017048
  • 7. Isa Abdullahi Baba, Evren Hincal, Global stability analysis of two-strain epidemic model with bilinear and non-monotone incidence rates, The European Physical Journal Plus, 2017, 132, 5, 10.1140/epjp/i2017-11476-x
  • 8. Joanna Pressley, Erika M.C. D’Agata, Glenn F. Webb, The effect of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains on competitive exclusion, Journal of Theoretical Biology, 2010, 264, 3, 645, 10.1016/j.jtbi.2010.03.036
  • 9. C. P. Bhunu, W. Garira, G. Magombedze, Mathematical Analysis of a Two Strain HIV/AIDS Model with Antiretroviral Treatment, Acta Biotheoretica, 2009, 57, 3, 361, 10.1007/s10441-009-9080-2
  • 10. Xue-Zhi Li, Wen-Sheng Li, Mini Ghosh, Stability and bifurcation of an SIS epidemic model with treatment, Chaos, Solitons & Fractals, 2009, 42, 5, 2822, 10.1016/j.chaos.2009.04.024
  • 11. Isa Abdullahi Baba, Evren Hincal, A model for influenza with vaccination and awareness, Chaos, Solitons & Fractals, 2018, 106, 49, 10.1016/j.chaos.2017.11.003
  • 12. Zhipeng Qiu, Xuezhi Li, Maia Martcheva, Multi-strain persistence induced by host age structure, Journal of Mathematical Analysis and Applications, 2012, 391, 2, 595, 10.1016/j.jmaa.2012.02.052
  • 13. Claver P. Bhunu, Winston Garira, A TWO STRAIN TUBERCULOSIS TRANSMISSION MODEL WITH THERAPY AND QUARANTINE, Mathematical Modelling and Analysis, 2009, 14, 3, 291, 10.3846/1392-6292.2009.14.291-312

Reader Comments

your name: *   your email: *  

Copyright Info: 2007, , licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved