1.
|
Zhipeng Qiu, Michael Y. Li, Zhongwei Shen,
Global dynamics of an infinite dimensional epidemic model with nonlocal state structures,
2018,
265,
00220396,
5262,
10.1016/j.jde.2018.06.036
|
|
2.
|
Samuel Bowong, Jean Jules Tewa,
Global analysis of a dynamical model for transmission of tuberculosis with a general contact rate,
2010,
15,
10075704,
3621,
10.1016/j.cnsns.2010.01.007
|
|
3.
|
Daihai He, David J.D. Earn,
Epidemiological effects of seasonal oscillations in birth rates,
2007,
72,
00405809,
274,
10.1016/j.tpb.2007.04.004
|
|
4.
|
Md Abdul Kuddus, Emma S. McBryde, Adeshina I. Adekunle, Lisa J. White, Michael T. Meehan,
Mathematical analysis of a two-strain disease model with amplification,
2021,
143,
09600779,
110594,
10.1016/j.chaos.2020.110594
|
|
5.
|
Divine Wanduku,
Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a non-random environment,
2018,
11,
1793-5245,
1850085,
10.1142/S1793524518500857
|
|
6.
|
Hongbin Guo, Michael Y. Li,
Global dynamics of a staged-progression model with amelioration for infectious diseases,
2008,
2,
1751-3758,
154,
10.1080/17513750802120877
|
|
7.
|
Yong Tian, Xuejun Ding,
Rumor spreading model with considering debunking behavior in emergencies,
2019,
363,
00963003,
124599,
10.1016/j.amc.2019.124599
|
|
8.
|
A.M. Elaiw,
Global properties of a class of HIV models,
2010,
11,
14681218,
2253,
10.1016/j.nonrwa.2009.07.001
|
|
9.
|
Junli Liu, Baoyang Peng, Tailei Zhang,
Effect of discretization on dynamical behavior of SEIR and SIR models with nonlinear incidence,
2015,
39,
08939659,
60,
10.1016/j.aml.2014.08.012
|
|
10.
|
Dessalegn Y. Melesse, Abba B. Gumel,
Global asymptotic properties of an SEIRS model with multiple infectious stages,
2010,
366,
0022247X,
202,
10.1016/j.jmaa.2009.12.041
|
|
11.
|
Yu Yang, Liguang Xu,
Stability of a fractional order SEIR model with general incidence,
2020,
105,
08939659,
106303,
10.1016/j.aml.2020.106303
|
|
12.
|
Muhammad Altaf Khan, Muhammad Ismail, Saif Ullah, Muhammad Farhan,
Fractional order SIR model with generalized incidence rate,
2020,
5,
2473-6988,
1856,
10.3934/math.2020124
|
|
13.
|
Abderrhaman Iggidr, Jean‐Claude Kamgang, Gauthier Sallet, Jean‐Jules Tewa,
Global Analysis of New Malaria Intrahost Models with a Competitive Exclusion Principle,
2006,
67,
0036-1399,
260,
10.1137/050643271
|
|
14.
|
R. N. Mohapatra, Donald Porchia, Zhisheng Shuai,
2015,
Chapter 51,
978-81-322-2484-6,
619,
10.1007/978-81-322-2485-3_51
|
|
15.
|
Zuzana Chladná, Jana Kopfová, Dmitrii Rachinskii, Samiha C. Rouf,
Global dynamics of SIR model with switched transmission rate,
2020,
80,
0303-6812,
1209,
10.1007/s00285-019-01460-2
|
|
16.
|
Haitao Song, Shengqiang Liu, Weihua Jiang,
Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate,
2016,
01704214,
10.1002/mma.4130
|
|
17.
|
C. Connell McCluskey,
Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations,
2015,
14,
1536-0040,
1,
10.1137/140971683
|
|
18.
|
Paul Georgescu, Ying-Hen Hsieh,
Global Dynamics of a Predator-Prey Model with Stage Structure for the Predator,
2007,
67,
0036-1399,
1379,
10.1137/060670377
|
|
19.
|
Xinzhi Liu, Peter Stechlinski,
Infectious disease models with time-varying parameters and general nonlinear incidence rate,
2012,
36,
0307904X,
1974,
10.1016/j.apm.2011.08.019
|
|
20.
|
Modeling the effects of carriers on transmission dynamics of infectious diseases,
2011,
8,
1551-0018,
711,
10.3934/mbe.2011.8.711
|
|
21.
|
Sarbaz H. A. Khoshnaw, Najem A. Mohammad, Rizgar H. Salih,
Identifying Critical Parameters in SIR Model for Spread of Disease,
2017,
05,
2327-4018,
32,
10.4236/ojmsi.2017.51003
|
|
22.
|
Andrei Korobeinikov,
Lyapunov Functions and Global Stability for SIR and SIRS Epidemiological Models with Non-Linear Transmission,
2006,
68,
0092-8240,
615,
10.1007/s11538-005-9037-9
|
|
23.
|
Juping Zhang, Zhen Jin, Yuming Chen,
Analysis of sexually transmitted disease spreading in heterosexual and homosexual populations,
2013,
242,
00255564,
143,
10.1016/j.mbs.2013.01.005
|
|
24.
|
A. Mhlanga, C. P. Bhunu, S. Mushayabasa,
HSV-2 and Substance Abuse amongst Adolescents: Insights through Mathematical Modelling,
2014,
2014,
1110-757X,
1,
10.1155/2014/104819
|
|
25.
|
Zhidong Teng, Lei Wang, Linfei Nie,
Global attractivity for a class of delayed discrete SIRS epidemic models with general nonlinear incidence,
2015,
38,
01704214,
4741,
10.1002/mma.3389
|
|
26.
|
E.H. Elbasha, C.N. Podder, A.B. Gumel,
Analyzing the dynamics of an SIRS vaccination model with waning natural and vaccine-induced immunity,
2011,
12,
14681218,
2692,
10.1016/j.nonrwa.2011.03.015
|
|
27.
|
C. P. BHUNU,
MODELING THE SPREAD OF STREET KIDS IN ZIMBABWE,
2014,
22,
0218-3390,
429,
10.1142/S0218339014500168
|
|
28.
|
Bradley G. Wagner, David J.D. Earn,
Population dynamics of live-attenuated virus vaccines,
2010,
77,
00405809,
79,
10.1016/j.tpb.2009.08.003
|
|
29.
|
Liang Zhang, Zhi-Cheng Wang,
Threshold dynamics of a reaction-diffusion epidemic model with stage structure,
2017,
22,
1553-524X,
3797,
10.3934/dcdsb.2017191
|
|
30.
|
Gang Huang, Yasuhiro Takeuchi,
Global analysis on delay epidemiological dynamic models with nonlinear incidence,
2011,
63,
0303-6812,
125,
10.1007/s00285-010-0368-2
|
|
31.
|
S. Mushayabasa, C.P. Bhunu, C. Webb, M. Dhlamini,
A mathematical model for assessing the impact of poverty on yaws eradication,
2012,
36,
0307904X,
1653,
10.1016/j.apm.2011.09.022
|
|
32.
|
Xinzhi Liu, Peter Stechlinski,
2017,
Chapter 3,
978-3-319-53206-6,
43,
10.1007/978-3-319-53208-0_3
|
|
33.
|
C. P. Bhunu, A. N. Mhlanga, S. Mushayabasa,
Exploring the Impact of Prostitution on HIV/AIDS Transmission,
2014,
2014,
2356-7872,
1,
10.1155/2014/651025
|
|
34.
|
S.M. Ashrafur Rahman, Xingfu Zou,
Modelling the impact of vaccination on infectious diseases dynamics,
2015,
9,
1751-3758,
307,
10.1080/17513758.2014.986545
|
|
35.
|
Yuji Li, Rui Xu, Jiazhe Lin,
The stability analysis of an epidemic model with saturating incidence and age-structure in the exposed and infectious classes,
2018,
2018,
1687-1847,
10.1186/s13662-018-1635-6
|
|
36.
|
Andrei Korobeinikov,
Global Properties of SIR and SEIR Epidemic Models with Multiple Parallel Infectious Stages,
2009,
71,
0092-8240,
75,
10.1007/s11538-008-9352-z
|
|
37.
|
A. Elazzouzi, A. Lamrani Alaoui, M. Tilioua, A. Tridane,
Global stability analysis for a generalized delayed SIR model with vaccination and treatment,
2019,
2019,
1687-1847,
10.1186/s13662-019-2447-z
|
|
38.
|
Elvira Barbera, Giancarlo Consolo, Giovanna Valenti,
Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-removed model,
2013,
88,
1539-3755,
10.1103/PhysRevE.88.052719
|
|
39.
|
Jinliang Wang, Ran Zhang, Toshikazu Kuniya,
The dynamics of an SVIR epidemiological model with infection age: Table 1.,
2016,
81,
0272-4960,
321,
10.1093/imamat/hxv039
|
|
40.
|
Pablo G. Barrientos, J. Ángel Rodríguez, Alfonso Ruiz-Herrera,
Chaotic dynamics in the seasonally forced SIR epidemic model,
2017,
75,
0303-6812,
1655,
10.1007/s00285-017-1130-9
|
|
41.
|
Samuel Bowong, Jurgen Kurths,
Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality,
2012,
67,
0924-090X,
2027,
10.1007/s11071-011-0127-y
|
|
42.
|
Yu Yang, Cuimei Zhang, Xunyan Jiang,
Global stability of an SEIQV epidemic model with general incidence rate,
2015,
08,
1793-5245,
1550020,
10.1142/S1793524515500205
|
|
43.
|
Zhisheng Shuai, P. van den Driessche,
Global Stability of Infectious Disease Models Using Lyapunov Functions,
2013,
73,
0036-1399,
1513,
10.1137/120876642
|
|
44.
|
Yijun Lou, Jianhong Wu,
Tick seeking assumptions and their implications for Lyme disease predictions,
2014,
17,
1476945X,
99,
10.1016/j.ecocom.2013.11.003
|
|
45.
|
Global properties of a delayed SIR epidemic
model with multiple parallel infectious stages,
2012,
9,
1551-0018,
685,
10.3934/mbe.2012.9.685
|
|
46.
|
Swarnali Sharma, G. P. Samanta,
A ratio-dependent predator-prey model with Allee effect and disease in prey,
2015,
47,
1598-5865,
345,
10.1007/s12190-014-0779-0
|
|
47.
|
Jinliang Wang, Min Guo, Xianning Liu, Zhitao Zhao,
Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay,
2016,
291,
00963003,
149,
10.1016/j.amc.2016.06.032
|
|
48.
|
David J. D. Earn,
2008,
Chapter 1,
978-3-540-78910-9,
3,
10.1007/978-3-540-78911-6_1
|
|
49.
|
JEAN M. TCHUENCHE, CHRISTINAH CHIYAKA,
STABILITY ANALYSIS OF A TRITROPHIC FOOD CHAIN MODEL WITH AN ADAPTIVE PARAMETER FOR THE PREDATOR,
2008,
22,
08908575,
237,
10.1111/j.1939-7445.2008.00035.x
|
|
50.
|
Xichao Duan, Sanling Yuan, Zhipeng Qiu, Junling Ma,
Global stability of an SVEIR epidemic model with ages of vaccination and latency,
2014,
68,
08981221,
288,
10.1016/j.camwa.2014.06.002
|
|
51.
|
Luju Liu, Yicang Zhou, Jianhong Wu,
Global Dynamics in a TB Model Incorporating Case Detection And Two Treatment Stages,
2008,
38,
0035-7596,
10.1216/RMJ-2008-38-5-1541
|
|
52.
|
S. M. Ashrafur Rahman, Xingfu Zou,
Flu epidemics: a two-strain flu model with a single vaccination,
2011,
5,
1751-3758,
376,
10.1080/17513758.2010.510213
|
|
53.
|
Gilberto C. González-Parra, Diego F. Aranda, Benito Chen-Charpentier, Miguel Díaz-Rodríguez, Jaime E. Castellanos,
Mathematical Modeling and Characterization of the Spread of Chikungunya in Colombia,
2019,
24,
2297-8747,
6,
10.3390/mca24010006
|
|
54.
|
S M O'Regan,
Impact of seasonality upon the dynamics of a novel pathogen in a seabird colony,
2008,
138,
1742-6596,
012017,
10.1088/1742-6596/138/1/012017
|
|
55.
|
Hongquan Sun, Jin Li,
A numerical method for a diffusive virus model with general incidence function, cell-to-cell transmission and time delay,
2020,
545,
03784371,
123477,
10.1016/j.physa.2019.123477
|
|
56.
|
Dan Li, Wanbiao Ma, Zhichao Jiang,
An Epidemic Model for Tick-Borne Disease with Two Delays,
2013,
2013,
1110-757X,
1,
10.1155/2013/427621
|
|
57.
|
Gang Huang, Yueping Dong,
A note on global properties for a stage structured predator–prey model with mutual interference,
2018,
2018,
1687-1847,
10.1186/s13662-018-1767-8
|
|
58.
|
Nicholas Kwasi-Do Ohene Opoku, Cecilia Afriyie,
The Role of Control Measures and the Environment in the Transmission Dynamics of Cholera,
2020,
2020,
1085-3375,
1,
10.1155/2020/2485979
|
|
59.
|
Impact of heterogeneity on the dynamics of an SEIR epidemic model,
2012,
9,
1551-0018,
393,
10.3934/mbe.2012.9.393
|
|
60.
|
Swarnali Sharma, G. P. Samanta,
Stability analysis and optimal control of an epidemic model with vaccination,
2015,
08,
1793-5245,
1550030,
10.1142/S1793524515500308
|
|
61.
|
Samuel Bowong, Jean Jules Tewa,
Mathematical analysis of a tuberculosis model with differential infectivity,
2009,
14,
10075704,
4010,
10.1016/j.cnsns.2009.02.017
|
|
62.
|
Yijun Lou, Xiao-Qiang Zhao,
Modelling Malaria Control by Introduction of Larvivorous Fish,
2011,
73,
0092-8240,
2384,
10.1007/s11538-011-9628-6
|
|
63.
|
Ellina V. Grigorieva, Evgenii N. Khailov, Andrei Korobeinikov,
Optimal Controls of the Highly Active Antiretroviral Therapy,
2020,
2020,
1085-3375,
1,
10.1155/2020/8107106
|
|
64.
|
Hai-Feng Huo, Shuai-Jun Dang, Yu-Ning Li,
Stability of a Two-Strain Tuberculosis Model with General Contact Rate,
2010,
2010,
1085-3375,
1,
10.1155/2010/293747
|
|
65.
|
Gang Huang, Anping Liu,
A note on global stability for a heroin epidemic model with distributed delay,
2013,
26,
08939659,
687,
10.1016/j.aml.2013.01.010
|
|
66.
|
Jinliang Wang, Xianning Liu,
Modeling diseases with latency and nonlinear incidence rates: global dynamics of a multi-group model,
2016,
39,
01704214,
1964,
10.1002/mma.3613
|
|
67.
|
Yanan Zhao, Xiaoying Zhang, Donal O'Regan,
THRESHOLD DYNAMICS IN A STOCHASTIC SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE,
2019,
9,
2156-907X,
2096,
10.11948/20180041
|
|
68.
|
Zhisheng Shuai, Joseph H. Tien, P. van den Driessche,
Cholera Models with Hyperinfectivity and Temporary Immunity,
2012,
74,
0092-8240,
2423,
10.1007/s11538-012-9759-4
|
|
69.
|
Xiaoming Fan, Zhigang Wang, Xuelian Xu,
Global Stability of Two-Group Epidemic Models with Distributed Delays and Random Perturbation,
2012,
2012,
1085-3375,
1,
10.1155/2012/132095
|
|
70.
|
Elamin H. Elbasha,
Global Stability of Equilibria in a Two-Sex HPV Vaccination Model,
2008,
70,
0092-8240,
10.1007/s11538-007-9283-0
|
|
71.
|
Xiaomei Ren, Tiansi Zhang,
Global Analysis of an SEIR Epidemic Model with a Ratio-Dependent Nonlinear Incidence Rate,
2017,
05,
2327-4352,
2311,
10.4236/jamp.2017.512188
|
|
72.
|
Wang Shaoli, Feng Xinlong, He Yinnian,
Global asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence,
2011,
31,
02529602,
1959,
10.1016/S0252-9602(11)60374-3
|
|
73.
|
Hongquan Sun, Jinliang Wang,
Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay,
2019,
77,
08981221,
284,
10.1016/j.camwa.2018.09.032
|
|
74.
|
Michael Y. Li,
2019,
Chapter 3,
978-3-030-22582-7,
63,
10.1007/978-3-030-22583-4_3
|
|
75.
|
Andrei Korobeinikov,
Global Properties of Infectious Disease Models with Nonlinear Incidence,
2007,
69,
0092-8240,
1871,
10.1007/s11538-007-9196-y
|
|
76.
|
Ram Singh, Madhu Jain, Shoket Ali,
2016,
Mathematical analysis of transmission dynamics of tuberculosis with recurrence based on treatment,
978-1-4673-9939-5,
2990,
10.1109/ICEEOT.2016.7755248
|
|
77.
|
Haitao Song, Weihua Jiang, Shengqiang Liu,
Global dynamics of two heterogeneous SIR models with nonlinear incidence and delays,
2016,
09,
1793-5245,
1650046,
10.1142/S1793524516500467
|
|
78.
|
C. P. Bhunu, S. Mushayabasa, J. M. Tchuenche,
A Theoretical Assessment of the Effects of Smoking on the Transmission Dynamics of Tuberculosis,
2011,
73,
0092-8240,
1333,
10.1007/s11538-010-9568-6
|
|
79.
|
Global stability for epidemic
model with constant latency and infectious periods,
2012,
9,
1551-0018,
297,
10.3934/mbe.2012.9.297
|
|
80.
|
Muhammad Altaf Khan, Qaisar Badshah, Saeed Islam, Ilyas Khan, Sharidan Shafie, Sher Afzal Khan,
Global dynamics of SEIRS epidemic model with non-linear generalized incidences and preventive vaccination,
2015,
2015,
1687-1847,
10.1186/s13662-015-0429-3
|
|
81.
|
C.Y. Chen, J.P. Ward, W.B. Xie,
Modelling the outbreak of infectious disease following mutation from a non-transmissible strain,
2019,
126,
00405809,
1,
10.1016/j.tpb.2018.08.002
|
|
82.
|
Hongbin Guo, Michael Y. Li,
Global dynamics of a staged-progression model for HIV/AIDS with amelioration,
2011,
12,
14681218,
2529,
10.1016/j.nonrwa.2011.02.021
|
|
83.
|
Sveir epidemiological model with varying infectivity and distributed delays,
2011,
8,
1551-0018,
875,
10.3934/mbe.2011.8.875
|
|
84.
|
Jonathan Horrocks, Chris T. Bauch,
Algorithmic discovery of dynamic models from infectious disease data,
2020,
10,
2045-2322,
10.1038/s41598-020-63877-w
|
|
85.
|
Aadil Lahrouz, Lahcen Omari, Driss Kiouach, Aziza Belmaâti,
Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination,
2012,
218,
00963003,
6519,
10.1016/j.amc.2011.12.024
|
|
86.
|
v b,
Test high volume of citations,
2012,
4,
0037-7333,
28,
10.5555/20120925-a1
|
|
87.
|
Lei Wang, Zhidong Teng, Long Zhang,
Global Behaviors of a Class of Discrete SIRS Epidemic Models with Nonlinear Incidence Rate,
2014,
2014,
1085-3375,
1,
10.1155/2014/249623
|
|
88.
|
Jean M. Tchuenche, Chris T. Bauch,
Dynamics of an Infectious Disease Where Media Coverage Influences Transmission,
2012,
2012,
2090-7702,
1,
10.5402/2012/581274
|
|
89.
|
Zhisheng Shuai, P. van den Driessche,
Global dynamics of cholera models with differential infectivity,
2011,
234,
00255564,
118,
10.1016/j.mbs.2011.09.003
|
|
90.
|
N.H. AlShamrani, A.M. Elaiw, H. Batarfi, A.D. Hobiny, H. Dutta,
Global stability analysis of a general nonlinear scabies dynamics model,
2020,
138,
09600779,
110133,
10.1016/j.chaos.2020.110133
|
|
91.
|
Abderrazak Nabti, Behzad Ghanbari,
Global stability analysis of a fractional SVEIR epidemic model,
2021,
0170-4214,
10.1002/mma.7285
|
|
92.
|
Guanghua Chen, Huizhang Shen, Guangming Chen, Teng Ye, Xiangbin Tang, Naphtali Kerr,
A new kinetic model to discuss the control of panic spreading in emergency,
2015,
417,
03784371,
345,
10.1016/j.physa.2014.09.055
|
|
93.
|
Swarnali Sharma, G.P. Samanta,
A Leslie–Gower predator–prey model with disease in prey incorporating a prey refuge,
2015,
70,
09600779,
69,
10.1016/j.chaos.2014.11.010
|
|
94.
|
Z. Mukandavire, W. Garira, J.M. Tchuenche,
Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics,
2009,
33,
0307904X,
2084,
10.1016/j.apm.2008.05.017
|
|
95.
|
D. Okuonghae,
Lyapunov functions and global properties of some tuberculosis models,
2015,
48,
1598-5865,
421,
10.1007/s12190-014-0811-4
|
|
96.
|
Maia Martcheva,
2015,
Chapter 7,
978-1-4899-7611-6,
149,
10.1007/978-1-4899-7612-3_7
|
|
97.
|
Joaquim P. Mateus, César M. Silva,
Existence of periodic solutions of a periodic SEIRS model with general incidence,
2017,
34,
14681218,
379,
10.1016/j.nonrwa.2016.09.013
|
|
98.
|
Xia Wang, Yuming Chen, Shengqiang Liu,
Dynamics of an age‐structured host‐vector model for malaria transmission,
2018,
41,
0170-4214,
1966,
10.1002/mma.4723
|
|
99.
|
S M O'Regan, T C Kelly, A Korobeinikov, M J A O'Callaghan, A V Pokrovskii,
Qualitative and numerical investigations of the impact of a novel pathogen on a seabird colony,
2008,
138,
1742-6596,
012018,
10.1088/1742-6596/138/1/012018
|
|
100.
|
K. Nudee, S. Chinviriyasit, W. Chinviriyasit,
The effect of backward bifurcation in controlling measles transmission by vaccination,
2019,
123,
09600779,
400,
10.1016/j.chaos.2019.04.026
|
|
101.
|
Ling Zhang, Jingmei Pang, Jinliang Wang,
Stability Analysis of a Multigroup Epidemic Model with General Exposed Distribution and Nonlinear Incidence Rates,
2013,
2013,
1085-3375,
1,
10.1155/2013/354287
|
|
102.
|
Suzanne M. O’Regan, Thomas C. Kelly, Andrei Korobeinikov, Michael J.A. O’Callaghan, Alexei V. Pokrovskii,
Lyapunov functions for SIR and SIRS epidemic models,
2010,
23,
08939659,
446,
10.1016/j.aml.2009.11.014
|
|
103.
|
Shu Liao, Jin Wang,
Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices,
2012,
45,
09600779,
966,
10.1016/j.chaos.2012.03.009
|
|
104.
|
Jean Claude Kamgang, Christopher Penniman Thron,
Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model,
2019,
81,
0092-8240,
4366,
10.1007/s11538-019-00637-6
|
|
105.
|
Ricardo Almeida, Artur M. C. Brito da Cruz, Natália Martins, M. Teresa T. Monteiro,
An epidemiological MSEIR model described by the Caputo fractional derivative,
2019,
7,
2195-268X,
776,
10.1007/s40435-018-0492-1
|
|
106.
|
GLOBAL DYNAMICS OF A REACTION AND DIFFUSION MODEL FOR AN HTLV-I INFECTION WITH MITOTIC DIVISION OF ACTIVELY INFECTED CELLS,
2017,
7,
2156-907X,
899,
10.11948/2017057
|
|
107.
|
Piu Samui, Jayanta Mondal, Subhas Khajanchi,
A mathematical model for COVID-19 transmission dynamics with a case study of India,
2020,
140,
09600779,
110173,
10.1016/j.chaos.2020.110173
|
|
108.
|
C. P. Bhunu, W. Garira, G. Magombedze,
Mathematical Analysis of a Two Strain HIV/AIDS Model with Antiretroviral Treatment,
2009,
57,
0001-5342,
361,
10.1007/s10441-009-9080-2
|
|
109.
|
Shuyu Han, Chengxia Lei,
Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence,
2019,
98,
08939659,
114,
10.1016/j.aml.2019.05.045
|
|
110.
|
Aberrahman Iggidr, Gauthier Sallet, Max O. Souza,
On the dynamics of a class of multi-group models for vector-borne diseases,
2016,
441,
0022247X,
723,
10.1016/j.jmaa.2016.04.003
|
|
111.
|
C. Connell McCluskey,
Global stability for a class of mass action systems allowing for latency in tuberculosis,
2008,
338,
0022247X,
518,
10.1016/j.jmaa.2007.05.012
|
|
112.
|
Cong Jin, Xiao-Yan Wang,
Analysis and control stratagems of flash disk virus dynamic propagation model,
2012,
5,
19390114,
226,
10.1002/sec.310
|
|
113.
|
Hongbin Guo, Michael Yi Li,
Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations,
2012,
17,
1553-524X,
2413,
10.3934/dcdsb.2012.17.2413
|
|
114.
|
C. Connell McCluskey,
Global stability for an SEI model of infectious disease with age structure and immigration of infecteds,
2016,
13,
1551-0018,
381,
10.3934/mbe.2015008
|
|
115.
|
P. Magal, C.C. McCluskey, G.F. Webb,
Lyapunov functional and global asymptotic stability for an infection-age model,
2010,
89,
0003-6811,
1109,
10.1080/00036810903208122
|
|
116.
|
Jean Claude Kamgang, Vivient Corneille Kamla, Stéphane Yanick Tchoumi,
Modeling the Dynamics of Malaria Transmission with Bed Net Protection Perspective,
2014,
05,
2152-7385,
3156,
10.4236/am.2014.519298
|
|
117.
|
Xinzhi Liu, Peter Stechlinski,
Transmission dynamics of a switched multi-city model with transport-related infections,
2013,
14,
14681218,
264,
10.1016/j.nonrwa.2012.06.003
|
|
118.
|
B. Bonzi, A. A. Fall, A. Iggidr, G. Sallet,
Stability of differential susceptibility and infectivity epidemic models,
2011,
62,
0303-6812,
39,
10.1007/s00285-010-0327-y
|
|
119.
|
Muhammad Altaf Khan, Yasir Khan, Taj Wali Khan, Saeed Islam,
Dynamical system of a SEIQV epidemic model with nonlinear generalized incidence rate arising in biology,
2017,
10,
1793-5245,
1750096,
10.1142/S1793524517500966
|
|
120.
|
Paul Georgescu, Ying‐Hen Hsieh,
Global Stability for a Virus Dynamics Model with Nonlinear Incidence of Infection and Removal,
2007,
67,
0036-1399,
337,
10.1137/060654876
|
|
121.
|
N Anggriani, A K Supriatna, E Soewono,
The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model,
2015,
622,
1742-6588,
012039,
10.1088/1742-6596/622/1/012039
|
|
122.
|
Mohamed El Fatini, Aziz Laaribi, Roger Pettersson, Regragui Taki,
Lévy noise perturbation for an epidemic model with impact of media coverage,
2019,
91,
1744-2508,
998,
10.1080/17442508.2019.1595622
|
|
123.
|
Soufiane Bentout, Abdennasser Chekroun, Toshikazu Kuniya,
Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria,
2020,
7,
2327-8994,
306,
10.3934/publichealth.2020026
|
|
124.
|
Dan Li, Wanbiao Ma,
Dynamical Analysis of a Stage-Structured Model for Lyme Disease with Two Delays,
2016,
59,
0008-4395,
363,
10.4153/CMB-2015-063-x
|
|
125.
|
C.P. Bhunu, S. Mushayabasa, R.J. Smith,
Assessing the effects of poverty in tuberculosis transmission dynamics,
2011,
0307904X,
10.1016/j.apm.2011.11.046
|
|
126.
|
Muhammad Altaf Khan, Sajjad Ullah, Saif Ullah, Muhammad Farhan,
Fractional order SEIR model with generalized incidence rate,
2020,
5,
2473-6988,
2843,
10.3934/math.2020182
|
|
127.
|
Jean Jules Tewa, Jean Luc Dimi, Samuel Bowong,
Lyapunov functions for a dengue disease transmission model,
2009,
39,
09600779,
936,
10.1016/j.chaos.2007.01.069
|
|
128.
|
Tzy-Wei Hwang, Feng-Bin Wang,
Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation,
2013,
18,
1553-524X,
147,
10.3934/dcdsb.2013.18.147
|
|
129.
|
GLOBAL DYNAMICS IN A MULTI-GROUP EPIDEMIC MODEL FOR DISEASE WITH LATENCY SPREADING AND NONLINEAR TRANSMISSION RATE,
2016,
6,
2156-907X,
47,
10.11948/2016005
|
|
130.
|
Ying Yang, Yanan Zhao, Daqing Jiang,
The dynamics of the stochastic multi-molecule biochemical reaction model,
2014,
52,
0259-9791,
1477,
10.1007/s10910-014-0324-2
|
|
131.
|
Ram P. Sigdel, C. Connell McCluskey,
Global stability for an SEI model of infectious disease with immigration,
2014,
243,
00963003,
684,
10.1016/j.amc.2014.06.020
|
|
132.
|
Shangbing Ai, Jia Li, Junliang Lu,
Mosquito-Stage-Structured Malaria Models and Their Global Dynamics,
2012,
72,
0036-1399,
1213,
10.1137/110860318
|
|
133.
|
Ram Singh, Madhu Jain, Shoket Ali,
2016,
Mathematical analysis of transmission dynamics of tuberculosis with recurrence based on treatment,
978-1-4673-9939-5,
3995,
10.1109/ICEEOT.2016.7755464
|
|
134.
|
Da-peng Gao, Nan-jing Huang,
Threshold dynamics of an SEIR epidemic model with a nonlinear incidence rate and a discontinuous treatment function,
2020,
114,
1578-7303,
10.1007/s13398-019-00751-z
|
|
135.
|
Jean Jules Tewa, Samuel Bowong, Boulchard Mewoli,
Mathematical analysis of two-patch model for the dynamical transmission of tuberculosis,
2012,
36,
0307904X,
2466,
10.1016/j.apm.2011.09.004
|
|
136.
|
Xia Wang, Youde Tao, Xinyu Song,
Global stability of a virus dynamics model with Beddington–DeAngelis incidence rate and CTL immune response,
2011,
66,
0924-090X,
825,
10.1007/s11071-011-9954-0
|
|
137.
|
J. Demongeot, O. Hansen, H. Hessami, A. S. Jannot, J. Mintsa, M. Rachdi, C. Taramasco,
Random Modelling of Contagious Diseases,
2013,
61,
0001-5342,
141,
10.1007/s10441-013-9176-6
|
|
138.
|
Huawen Ye, Weihua Gui, Honglei Xu,
Global convergence analysis of a class of epidemic models,
2017,
47,
0307904X,
442,
10.1016/j.apm.2017.03.013
|
|
139.
|
Tanuja Das, Prashant K. Srivastava, Anuj Kumar,
Nonlinear dynamical behavior of an SEIR mathematical model: Effect of information and saturated treatment,
2021,
31,
1054-1500,
043104,
10.1063/5.0039048
|
|
140.
|
Shubhankar Saha, Priti Kumar Roy,
A Comparative Study Between Two Systems with and Without Awareness in Controlling HIV/AIDS,
2017,
27,
2083-8492,
337,
10.1515/amcs-2017-0024
|
|
141.
|
Antonín Slavík,
Reaction–diffusion equations on graphs: stationary states and Lyapunov functions,
2021,
34,
0951-7715,
1854,
10.1088/1361-6544/abd52c
|
|
142.
|
Anupam Khatua, Debprasad Pal, Tapan Kumar Kar,
Global Dynamics of a Diffusive Two-Strain Epidemic Model with Non-Monotone Incidence Rate,
2022,
46,
1028-6276,
859,
10.1007/s40995-022-01287-5
|
|
143.
|
Md Abdul Kuddus, Azizur Rahman,
Analysis of COVID-19 using a modified SLIR model with nonlinear incidence,
2021,
27,
22113797,
104478,
10.1016/j.rinp.2021.104478
|
|
144.
|
Ardak Kashkynbayev, Daiana Koptleuova,
Global dynamics of tick-borne diseases,
2020,
17,
1551-0018,
4064,
10.3934/mbe.2020225
|
|
145.
|
Tianyu Cheng, Xingfu Zou,
A new perspective on infection forces with demonstration by a DDE infectious disease model,
2022,
19,
1551-0018,
4856,
10.3934/mbe.2022227
|
|
146.
|
Jana Kopfová, Petra Nábělková, Dmitrii Rachinskii, Samiha C. Rouf,
Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator,
2021,
83,
0303-6812,
10.1007/s00285-021-01629-8
|
|
147.
|
Abderrahman Iggidr, Max O. Souza,
On the limits of the Volterra function in the Lyapunov method: The Anderson-May-Gupta model as a cautionary example,
2023,
517,
0022247X,
126465,
10.1016/j.jmaa.2022.126465
|
|
148.
|
Attiq ul Rehman, Ram Singh, Praveen Agarwal,
On Fractional Lyapunov Functions of Nonlinear Dynamic Systems and Mittag-Leffler Stability Thereof,
2022,
2,
2673-9321,
209,
10.3390/foundations2010013
|
|
149.
|
Kuldeep Chaudhary, Pradeep Kumar, Sudipa Chauhan, Vijay Kumar,
Optimal promotional policy of an innovation diffusion model incorporating the brand image in a segment-specific market,
2022,
9,
2327-0012,
120,
10.1080/23270012.2021.1978883
|
|
150.
|
Hongquan Sun, Hong Li, Jin Li, Zhangsheng Zhu,
Dynamics of an SIRS model with age structure and two delays,
2021,
14,
1793-5245,
10.1142/S179352452150056X
|
|
151.
|
A. Lamrani Alaoui, M. Tilioua, M. R. Sidi Ammi, P. Agarwal,
2021,
Chapter 2,
978-981-16-2449-0,
17,
10.1007/978-981-16-2450-6_2
|
|
152.
|
Alfonso Ruiz-Herrera,
Stable and unstable endemic solutions in the seasonally forced SIR epidemic model,
2023,
0,
1531-3492,
0,
10.3934/dcdsb.2023046
|
|
153.
|
S. Bowong, A. Temgoua, Y. Malong, J. Mbang,
Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages,
2020,
21,
2191-0294,
259,
10.1515/ijnsns-2017-0244
|
|
154.
|
Ion Bica, Zhichun Zhai, Rui Hu,
A modified Susceptible-Infected-Recovered epidemiological model,
2022,
49,
12236934,
291,
10.52846/ami.v49i2.1560
|
|
155.
|
Jagan Mohan Jonnalagadda,
Epidemic Analysis and Mathematical Modelling of H1N1 (A) with Vaccination,
2022,
9,
2353-0626,
1,
10.1515/msds-2020-0143
|
|
156.
|
Weixin Wu, Zhidong Teng,
Periodic wave propagation in a diffusive SIR epidemic model with nonlinear incidence and periodic environment,
2022,
63,
0022-2488,
122701,
10.1063/5.0109312
|
|
157.
|
Abdesslem Lamrani Alaoui, Moulay Rchid Sidi Ammi, Mouhcine Tilioua, Delfim F.M. Torres,
2022,
9780323905046,
191,
10.1016/B978-0-32-390504-6.00016-4
|
|
158.
|
Ardak Kashkynbayev, Fathalla A. Rihan,
Dynamics of Fractional-Order Epidemic Models with General Nonlinear Incidence Rate and Time-Delay,
2021,
9,
2227-7390,
1829,
10.3390/math9151829
|
|
159.
|
Santosh Ansumali, Shaurya Kaushal, Aloke Kumar, Meher K. Prakash, M. Vidyasagar,
Modelling a pandemic with asymptomatic patients, impact of lockdown and herd immunity, with applications to SARS-CoV-2,
2020,
50,
13675788,
432,
10.1016/j.arcontrol.2020.10.003
|
|
160.
|
Linhe Zhu, Xuewei Wang, Zhengdi Zhang, Chengxia Lei,
Spatial dynamics and optimization method for a rumor propagation model in both homogeneous and heterogeneous environment,
2021,
105,
0924-090X,
3791,
10.1007/s11071-021-06782-9
|
|
161.
|
Walid Ben Aribi, Bechir Naffeti, Kaouther Ayouni, Hamadi Ammar, Henda Triki, Slimane Ben Miled, Amira Kebir,
Global Stability and Numerical Analysis of a Compartmental Model of the Transmission of the Hepatitis A Virus (HAV): A Case Study in Tunisia,
2022,
8,
2349-5103,
10.1007/s40819-022-01326-0
|
|
162.
|
Ke Qi, Zhijun Liu, Lianwen Wang, Yuming Chen,
Global dynamics of a diffusive SEICR HCV model with nonlinear incidences,
2023,
206,
03784754,
181,
10.1016/j.matcom.2022.11.017
|
|
163.
|
Yu Gu, Mohabat Khan, Rahat Zarin, Amir Khan, Abdullahi Yusuf, Usa Wannasingha Humphries,
Mathematical analysis of a new nonlinear dengue epidemic model via deterministic and fractional approach,
2023,
67,
11100168,
1,
10.1016/j.aej.2022.10.057
|
|
164.
|
Santosh Ansumali, Shaurya Kaushal, Aloke Kumar, Meher K. Prakash, M. Vidyasagar,
Modelling the COVID-19 Pandemic: Asymptomatic Patients, Lockdown and Herd Immunity,
2020,
53,
24058963,
823,
10.1016/j.ifacol.2021.04.223
|
|
165.
|
Guodong Liu, Xiaoyan Zhang,
Asymptotic dynamics of a logistic SIS epidemic reaction-diffusion model with nonlinear incidence rate,
2023,
520,
0022247X,
126866,
10.1016/j.jmaa.2022.126866
|
|
166.
|
Divine Wanduku,
ESTIMATING WHITE NOISE INTENSITY REGIONS FOR COMPARABLE PROPERTIES OF A CLASS OF SEIRS STOCHASTIC AND DETERMINISTIC EPIDEMIC MODELS,
2021,
11,
2156-907X,
1095,
10.11948/20190372
|
|
167.
|
Modeste N'zi, Gérard Kanga,
Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model with saturated incidence rate,
2016,
24,
0926-6364,
65,
10.1515/rose-2016-0005
|
|
168.
|
Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li,
Global stability of latency-age/stage-structured epidemic models with differential infectivity,
2023,
86,
0303-6812,
10.1007/s00285-023-01918-4
|
|
169.
|
Liancheng WANG, Xiaoqin WU,
Stability and Hopf Bifurcation for an SEIR Epidemic Model with Delay,
2018,
2,
2587-2648,
113,
10.31197/atnaa.380970
|
|
170.
|
Svetozar Margenov, Nedyu Popivanov, Iva Ugrinova, Tsvetan Hristov,
Differential and Time-Discrete SEIRS Models with Vaccination: Local Stability, Validation and Sensitivity Analysis Using Bulgarian COVID-19 Data,
2023,
11,
2227-7390,
2238,
10.3390/math11102238
|
|
171.
|
Florian Nill,
Endemic oscillations for SARS-CoV-2 Omicron—A SIRS model analysis,
2023,
173,
09600779,
113678,
10.1016/j.chaos.2023.113678
|
|
172.
|
Zviiteyi Chazuka, Edinah Mudimu, Dephney Mathebula,
Stability and bifurcation analysis of an HIV model with pre-exposure prophylaxis and treatment interventions,
2024,
23,
24682276,
e01979,
10.1016/j.sciaf.2023.e01979
|
|
173.
|
Daudel Tchatat, Gabriel Guilsou Kolaye, Amadou Alioum, Samuel Bowong, Céline Maïrousgou,
Mathematical modelling of the impact of poverty on cholera outbreaks,
2023,
0170-4214,
10.1002/mma.9727
|
|
174.
|
Patrick Noah Okolo, Christiana Gideon Makama, Roseline Toyin Abah,
A MATHEMATICAL MODEL FOR TUBERCULOSIS INFECTION TRANSMISSION DYNAMICS IN THE PRESENCE OF TESTING AND THERAPY, ISOLATION AND TREATMENT,
2023,
7,
2616-1370,
103,
10.33003/fjs-2023-0706-2108
|
|
175.
|
Moreen Brenda Gatwiri, Marilyn Ronoh, Cyrus Gitonga Ngari, Dominic Makaa Kitavi, Firdous A. Shah,
Mathematical Modelling of Host-Pest Interaction in the Presence of Insecticides and Resistance: A Case of Fall Armyworm,
2024,
2024,
2314-4785,
1,
10.1155/2024/2886786
|
|
176.
|
Summer Atkins, Michael Malisoff,
Robustness of feedback control for SIQR epidemic model under measurement uncertainty,
2023,
0,
2156-8472,
0,
10.3934/mcrf.2023043
|
|
177.
|
Huicong Li, Tian Xiang,
On an SIS epidemic model with power‐like nonlinear incidence and with/without cross‐diffusion,
2024,
0022-2526,
10.1111/sapm.12683
|
|
178.
|
J. A. Akingbade, R. A. Adetona, B. S Ogundare,
Mathematical model for the study of transmission and control of measles with immunity at initial stage,
2018,
6,
23193786,
823,
10.26637/MJM0604/0019
|
|
179.
|
Jinlong Lv, Wanbiao Ma,
Delay induced stability switch in a mathematical model of CD8 T-cell response to SARS-CoV-2 mediated by receptor ACE2,
2024,
34,
1054-1500,
10.1063/5.0187872
|
|
180.
|
Saida Id Ouaziz, Mohammed El Khomssi,
Mathematical approaches to controlling COVID-19: optimal control and financial benefits,
2024,
4,
2791-8564,
1,
10.53391/mmnsa.1373093
|
|
181.
|
Mohammed Azoua, Marouane Karim, Abderrahim Azouani, Imad Hafidi,
Improved parameter estimation in epidemic modeling using continuous data assimilation methods,
2024,
1598-5865,
10.1007/s12190-024-02145-w
|
|
182.
|
Shan Yang, Shihan Liu, Kaijun Su, Jianhong Chen,
A Rumor Propagation Model Considering Media Effect and Suspicion Mechanism under Public Emergencies,
2024,
12,
2227-7390,
1906,
10.3390/math12121906
|
|
183.
|
Rattiya Sungchasit, I.-Ming Tang, Puntani Pongsumpun,
Sensitivity analysis and global stability of epidemic between Thais and tourists for Covid -19,
2024,
14,
2045-2322,
10.1038/s41598-024-71009-x
|
|
184.
|
Sacrifice Nana-Kyere, Baba Seidu, Kwara Nantomah,
Optimal control and cost-effectiveness analysis of nonlinear deterministic Zika virus model,
2024,
2363-6203,
10.1007/s40808-024-02130-z
|
|
185.
|
Suvankar Majee, Soovoojeet Jana, T. K. Kar, Bidhan Bhunia,
Complex dynamics of a fractional-order delayed epidemic model incorporating waning immunity and optimal control,
2024,
1951-6355,
10.1140/epjs/s11734-024-01221-3
|
|
186.
|
Xiaoqing Mu,
Stability analysis of a conventional SEIR epidemic model with relapse and general nonlinear incidence,
2024,
2905,
1742-6588,
012036,
10.1088/1742-6596/2905/1/012036
|
|
187.
|
Dilfuza Eshmamatova, Axror Bozorov,
2024,
3244,
0094-243X,
020034,
10.1063/5.0241483
|
|
188.
|
Benjamin Wacker,
Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis,
2024,
21,
1551-0018,
7805,
10.3934/mbe.2024343
|
|
189.
|
Bechir Naffeti, Zeineb Ounissi, Akhil Kumar Srivastav, Nico Stollenwerk, Joseba Bidaurrazaga Van-Dierdonck, Maíra Aguiar,
Modeling COVID-19 dynamics in the Basque Country: characterizing population immunity profile from 2020 to 2022,
2025,
25,
1471-2334,
10.1186/s12879-024-10342-y
|
|
190.
|
Sumana Ghosh, Jayanta Mondal, Subhas Khajanchi,
Effect of media awareness in the spread of infectious diseases,
2025,
1598-5865,
10.1007/s12190-025-02387-2
|
|