Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article

On Reidemeister torsion of flag manifolds of compact semisimple Lie groups

  • Received: 25 June 2020 Accepted: 23 September 2020 Published: 24 September 2020
  • MSC : 57Q10, 16Z05, 14M15, 14N15, 22E67

  • In this paper we calculate Reidemeister torsion of flag manifold K/T of compact semi-simple Lie group K=SUn+1 using Reidemeister torsion formula and Schubert calculus, where T is maximal torus of K. We find that this number is 1. Also we explicitly calculate ring structure of integral cohomology algebra of flag manifold K/T of compact semi-simple Lie group K=SUn+1 using root data, and Groebner basis techniques.

    Citation: Cenap Özel, Habib Basbaydar, Yasar Sñzen, Erol Yilmaz, Jung Rye Lee, Choonkil Park. On Reidemeister torsion of flag manifolds of compact semisimple Lie groups[J]. AIMS Mathematics, 2020, 5(6): 7562-7581. doi: 10.3934/math.2020484

    Related Papers:

    [1] Yongli Zhang, Jiaxin Shen . Flag-transitive non-symmetric 2-designs with λ prime and exceptional groups of Lie type. AIMS Mathematics, 2024, 9(9): 25636-25645. doi: 10.3934/math.20241252
    [2] Jiaxin Shen, Yuqing Xia . Flag-transitive 2-designs with block size 5 and alternating groups. AIMS Mathematics, 2025, 10(5): 10308-10323. doi: 10.3934/math.2025469
    [3] Mairaj Bibi, Sajid Ali, Muhammad Shoaib Arif, Kamaleldin Abodayeh . Solving singular equations of length eight over torsion-free groups. AIMS Mathematics, 2023, 8(3): 6407-6431. doi: 10.3934/math.2023324
    [4] Salah G. Elgendi, Zoltán Muzsnay . The geometry of geodesic invariant functions and applications to Landsberg surfaces. AIMS Mathematics, 2024, 9(9): 23617-23631. doi: 10.3934/math.20241148
    [5] Ahmet S. Cevik, Eylem G. Karpuz, Hamed H. Alsulami, Esra K. Cetinalp . A Gröbner-Shirshov basis over a special type of braid monoids. AIMS Mathematics, 2020, 5(5): 4357-4370. doi: 10.3934/math.2020278
    [6] Cagri Karaman . Statistical connections on decomposable Riemann manifold. AIMS Mathematics, 2020, 5(5): 4722-4733. doi: 10.3934/math.2020302
    [7] Rajesh Kumar, Sameh Shenawy, Lalnunenga Colney, Nasser Bin Turki . Certain results on tangent bundle endowed with generalized Tanaka Webster connection (GTWC) on Kenmotsu manifolds. AIMS Mathematics, 2024, 9(11): 30364-30383. doi: 10.3934/math.20241465
    [8] Limin Liu, Hongjin Liu . Consistent pairs of s-torsion pairs in extriangulated categories with negative first extensions. AIMS Mathematics, 2024, 9(1): 1494-1508. doi: 10.3934/math.2024073
    [9] George Rosensteel . Differential geometry of collective models. AIMS Mathematics, 2019, 4(2): 215-230. doi: 10.3934/math.2019.2.215
    [10] Jin Zhong, Yilin Zhang . Dual group inverses of dual matrices and their applications in solving systems of linear dual equations. AIMS Mathematics, 2022, 7(5): 7606-7624. doi: 10.3934/math.2022427
  • In this paper we calculate Reidemeister torsion of flag manifold K/T of compact semi-simple Lie group K=SUn+1 using Reidemeister torsion formula and Schubert calculus, where T is maximal torus of K. We find that this number is 1. Also we explicitly calculate ring structure of integral cohomology algebra of flag manifold K/T of compact semi-simple Lie group K=SUn+1 using root data, and Groebner basis techniques.


    Reidemeister torsion is a topological invariant and was introduced by Reidemeister in 1935. Up to PL equivalence, he classified the lens spaces S3/Γ, where Γ is a finite cyclic group of fixed point free orthogonal transformations [20]. In [11], Franz extended the Reidemeister torsion and classified the higher dimensional lens spaces S2n+1/Γ, where Γ is a cyclic group acting freely and isometrically on the sphere S2n+1.

    In 1964, the results of Reidemeister and Franz were extended by de Rham to spaces of constant curvature +1 [10]. Kirby and Siebenmann proved the topological invariance of the Reidemeister torsion for manifolds in 1969 [14]. Chapman proved for arbitrary simplicial complexes [7,8]. Hence, the classification of lens spaces of Reidemeister and Franz was actually topological (i.e., up to homeomorphism).

    Using the Reidemeister torsion, Milnor disproved Hauptvermutung in 1961. He constructed two homeomorphic but combinatorially distinct finite simplicial complexes. He identified in 1962 the Reidemeister torsion with Alexander polynomial which plays an important role in knot theory and links [16,18].

    In [21], Sözen explained the claim mentioned in [27,p. 187] about the relation between a symplectic chain complex with ωcompatible bases and the Reidemeister torsion of it. Moreover, he applied the main theorem to the chain-complex

    0C2(Σg;Adϱ)2idC1(Σg;Adϱ)1idC0(Σg;Adϱ)0,

    where Σg is a compact Riemann surface of genus g>1, where is the usual boundary operator, and where ϱ:π1(Σg)PSL2(R) is a discrete and faithful representation of the fundamental group π1(Σg) of Σg [21]. Now we will give his description of Reidemesister torsion and explain why it is not unique by a result of Milnor in [17].

    Let Hp(C)=Zp(C)/Bp(C) denote the homologies of the chain complex (C,)=(CnnCn1C11C00) of finite dimensional vector spaces over field C or R, where Bp=Im{p+1:Cp+1Cp}, Zp=ker{p:CpCp1}, respectively.

    Consider the short-exact sequences:

    0ZpCpBp10 (1.1)
    0BpZpHp0, (1.2)

    where (1.1) is a result of 1st-Isomorphism Theorem and (1.2) follows simply from the definition of Hp. Note that if bp is a basis for Bp, hp is a basis for Hp, and p:HpZp and sp:Bp1Cp are sections, then we obtain a basis for Cp. Namely, bpp(hp)sp(bp1).

    If, for p=0,,n, cp, bp, and hp are bases for Cp, Bp and Hp, respectively, then the alternating product

    Tor(C,{cp}np=0,{hp}np=0)=np=0[bpp(hp)sp(bp1),cp](1)(p+1) (1.3)

    is called the Reidemeister torsion of the complex C with respect to bases {cp}np=0, {hp}np=0, where [bpp(hp)sp(bp1),cp] denotes the determinant of the change-base matrix from cp to bpp(hp)sp(bp1).

    Milnor [17] proved that torsion does not depend on neither the bases bp, nor the sections sp,p. Moreover, if cp,hp are other bases respectively for Cp and Hp, then there is the change-base-formula:

    Tor(C,{cp}np=0,{hp}np=0)=np=0([cp,cp][hp,hp])(1)pTor(C,{cp}np=0,{hp}np=0). (1.4)

    Let M be a smooth nmanifold, K be a cell-decomposition of M with for each p=0,,n, cp={ep1,,epmp}, called the geometric basis for the pcells Cp(K;Z). Hence, we have the chain-complex associated to M

    0Cn(K)nCn1(K)C1(K)1C0(K)0, (1.5)

    where p denotes the boundary operator. Then Tor(C(K),{cp}np=0,{hp}np=0) is called the Reidemeister torsion of M, where hp is a basis for Hp(K).

    In [23], oriented closed connected 2mmanifolds (m1) are considered and he proved the following formula for computing the Reidemeister torsion of them. Namely,

    Theorem 1.1. Let M be an oriented closed connected 2mmanifold (m1). For p=0,,2m, let hp be a basis of Hp(M). Then the Reidemeister torsion of M satisfies the following formula:

    |T(M,{hp}2m0)|=m1p=0|detHp,2mp(M)|(1)p|detHm,m(M)|(1)m,

    where detHp,2mp(M) is the determinant of the matrix of the intersection pairing (,)p,2mp:Hp(M)×H2mp(M) R in bases hp,h2mp.

    It is well known that Riemann surfaces and Grasmannians have many applications in a wide range of mathematics such as topology, differential geometry, algebraic geometry, symplectic geometry, and theoretical physics (see [2,3,5,6,12,13,22,24,25,26] and the references therein). They also applied Theorem 1.1 to Riemann surfaces and Grasmannians.

    In this work we calculate Reidemeister torsion of compact flag manifold K/T for K=SUn+1, where K is a compact simply connected semi-simple Lie group and T is maximal torus [28].

    The content of the paper is as follows. In Section 2 we give all details of cup product formula in the cohomology ring of flag manifolds which is called Schubert calculus [15,19]. In the last section we calculate the Reidemesiter torsion of flag manifold SUn+1/T for n3.

    The results of this paper were obtained during M.Sc studies of Habib Basbaydar at Abant Izzet Baysal University and are also contained in his thesis [1].

    Now, we will give the important formula equivalent to the cup product formula in the cohomology of G/B where G is a Kač-Moody group. The fundamental references for this section are [15,19]. To do this we will give a relation between the complex nil Hecke ring and H(K/T,C). Also we introduce a multiplication formula and the actions of reflections and Berstein-Gelfand-Gelfand type BGG operators Ai on the basis elements in the nil Hecke ring.

    Proposition 2.1.

    ξuξv=u,v

    where p_{u, v}^w is a homogeneous polynomial of degree \ell (u) + \ell (v) - \ell (w) .

    Proposition 2.2.

    r_i \xi^w = \begin{cases} \xi^w & \mathit{\text{if} }~ r_i w \gt w, \\ -(w^{-1} \alpha_i) \xi^{r_i w} + \xi^w - { }\sum\limits_{r_i w \xrightarrow{\gamma} w'} \alpha_i (\gamma^{\vee}) \xi^{w'} & \mathit{\text{otherwise}}. \end{cases}

    Theorem 2.3. Let u, v \in W . We write w^{-1} = r_{i_1} \cdots r_{i_n} as a reduced expression.

    p_{u, v}^w = { }\sum\limits_{\substack{j_1 \lt \cdots \lt j_m\\ r_{j_1} \cdots r_{j_m} = v^{-1}}} A_{i_1} \circ \cdots \circ \hat{A}_{i_{j_1}} \circ \cdots \circ \hat{A}_{i_{j_m}} \circ \cdots \circ A_{i_n} (\xi^u) (e)

    where m = \ell (v) and the notation \hat{A}_i means that the operator A_i is replaced by the Weyl group action r_i .

    Let \mathbb C_0 = S / S^+ be the S -module where S^+ is the augmentation ideal of S . It is 1-dimensional as \mathbb C -vector space. Since \Lambda is a S -module, we can define \mathbb C_0 \otimes_{S} \Lambda . It is an algebra and the action of \mathcal R on \Lambda gives an action of \mathcal R on \mathbb C_0 \otimes_{S} \Lambda . The elements \sigma^w = 1 \otimes \xi^w \in \mathbb C_0 \otimes_S \Lambda is a \mathbb C -basis form of \mathbb C_0 \otimes_{S} \Lambda .

    Proposition 2.4. \mathbb C_0 \otimes_{S} \Lambda is a graded algebra associated with the filtration of length of the element of the Weyl group W .

    Proposition 2.5. The complex linear map f: \mathbb C_0 \otimes_{S} \Lambda \rightarrow {\operatorname{Gr}} \mathbb C \{W\} is a graded algebra homomorphism.

    Theorem 2.6. Let K be the standard real form of the group G associated to a symmetrizable Kač-Moody Lie algebra \mathbf g and let T denote the maximal torus of K . Then the map

    \theta: H^*(K / T, \mathbb C) \rightarrow \mathbb C_0 \otimes_S \Lambda

    defined by \theta (\varepsilon^w) = \sigma^w for any w \in W is a graded algebra isomorphism. Moreover, the action of w \in W and A^w on H^*(K / T, \mathbb C) corresponds respectively to that \delta_w and x_w \in \mathcal R on \mathbb C_0 \otimes_S \Lambda .

    Corollary 2.7. The operators A^i on H^*(K / T, \mathbb C) generate the nil-Hecke algebra.

    Corollary 2.8. We can use Proposition 2.1 and Theorem 2.3 to determine the cup product \varepsilon^u \varepsilon^v in terms of the Schubert basis \{\varepsilon^w\}_{w \in W} of H^*(K/ T, \mathbb Z) .

    This section includes our calculations about Reidemeister torsion of flag manifolds using Theorem 1.1 and Proposition 2.1 because \chi(SU_{n+1}/T) = |W| = n! is always an even number.

    We know that the Weyl group W of K acts on the Lie algebra of the maximal torus T . lt is a finite group of isometries of the Lie algebra t of the maximal torus T . lt preserves the coweight lattice T^v . For each simple root \alpha , the Weyl group W contains an element r_\alpha of order two represented by e^{((\pi/2)(e_\alpha+e_{-\alpha}))} in N(T) . Since the roots \alpha can be considered as the linear functionals on the Lie algebra t of the maximal torus T , the action of r_\alpha on t is given by

    r_\alpha(\xi) = \xi-\alpha(\xi)h_\alpha \quad \mathrm{for}\quad \xi \in \textbf{t},

    where h_\alpha is the coroot in t corresponding to simple root \alpha .Also, we can give the action of r_\alpha on the roots by

    r_\alpha(\beta) = \beta-\alpha(h_\beta)\alpha \quad \mathrm{for}\quad \alpha, \beta\in \textbf{t}^*,

    where \textbf{t}^* is the dual vector space of t. The element r_\alpha is the reflection in the hyperplane H_\alpha of t whose equation is \alpha(\xi) = 0 . These reflections r_\alpha generate the Weyl group W .

    Set \alpha_1, \alpha_2, \ldots, \alpha_n be roots of Weyl Group of SU_{n+1} . Since the Cartan Matrix of Weyl Group of SU_{n+1} is

    M_{ij} = \left\{\begin{array}{cc} 2 & i = j \\ -1 & |i-j| = 1 \\ 0 & \hbox{otherwise} \end{array} \right. ,

    r_{\alpha_i}(\alpha_j) = \left\{ \begin{array}{ll} -\alpha_i, & i = j \\ \alpha_i+\alpha_j, & |i-j| = 1 \\ \alpha_j, & \hbox{otherwise}. \end{array} \right.

    Proposition 3.1. The Weyl group W of SU_{n+1} is isomorphic to Coxeter Group A_n given by generators s_1, s_2, \ldots, s_n and relations

    (i) s_i^2 = 1 \qquad i = 1, 2, \ldots, n ;

    (ii) s_is_{i+1}s_i = s_{i+1}s_is_{i+1} \qquad i = 1, 2, \ldots, n-1 ;

    (iii) s_is_j = s_js_i \qquad 1\leq i < j-1 < n .

    Proof. (i)

    \begin{eqnarray*} r_{\alpha_i}\circ r_{\alpha_i}(\beta) & = & r_{\alpha_i}(\beta- \lt \alpha_i, \beta \gt \alpha_i) \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \beta- \lt \alpha_i, \beta \gt \alpha_i, \alpha_i \gt \alpha_i \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \beta, \alpha_i \gt \alpha_i+ \lt \alpha_i, \beta \gt \lt \alpha_i, \alpha_i \gt \alpha_i \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_i, \beta \gt \alpha_i+2 \lt \alpha_i, \beta \gt \alpha_i \\ & = & \beta. \end{eqnarray*}

    (ii)

    \begin{eqnarray*} r_{\alpha_i}\circ r_{\alpha_{i+1}}\circ r_{\alpha_i}(\beta) & = & r_{\alpha_i}\circ r_{\alpha_{i+1}}(\beta- \lt \alpha_i, \beta \gt \alpha_i) \\ & = & r_{\alpha_i}(\beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta- \lt \alpha_i, \beta \gt \alpha_i \gt \alpha_{i+1}) \\ & = & r_{\alpha_i}(\beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}\\ & &\quad + \lt \alpha_{i+1}, \lt \alpha_i, \beta \gt \alpha_i \gt \alpha_{i+1}) \\ & = & r_{\alpha_i}(\beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}\\ & &\quad + \lt \alpha_i, \beta \gt \lt \alpha_{i+1}, \alpha_i \gt \alpha_{i+1}) \\ & = & r_{\alpha_i}(\beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_i, \beta \gt \alpha_{i+1}) \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_i, \beta \gt \alpha_{i+1}\\ & &\quad - \lt \alpha_i, \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}\\ & &\quad - \lt \alpha_i, \beta \gt \alpha_{i+1} \gt \alpha_i \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_i, \beta \gt \alpha_{i+1}\\ & &\quad - \lt \alpha_i, \beta \gt \alpha_i+ \lt \alpha_i, \beta \gt \lt \alpha_i, \alpha_i \gt \alpha_i\\ & &\quad + \lt \alpha_{i+1}, \beta \gt \lt \alpha_{i+1}, \alpha_i \gt \alpha_i+ \lt \alpha_i, \beta \gt \lt \alpha_{i+1}, \alpha_i \gt \alpha_i \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_i, \beta \gt \alpha_{i+1}\\ & &\quad - \lt \alpha_i, \beta \gt \alpha_i+2 \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_i\\ & &\quad - \lt \alpha_i, \beta \gt \alpha_i \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}\\ & &\quad - \lt \alpha_i, \beta \gt \alpha_{i+1} \\ & = & \beta-( \lt \alpha_i, \beta \gt + \lt \alpha_{i+1}, \beta \gt )(\alpha_i+\alpha_{i+1}). \end{eqnarray*}
    \begin{eqnarray*} r_{\alpha_{i+1}}\circ r_{\alpha_i}\circ r_{\alpha_{i+1}}(\beta) & = & r_{\alpha_{i+1}}\circ r_{\alpha_i}(\beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}) \\ & = & r_{\alpha_{i+1}}(\beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_{i}, \beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1} \gt \alpha_{i})\\ & = & r_{\alpha_{i+1}}(\beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_{i}, \beta \gt \alpha_{i}\\ & &\quad + \lt \alpha_{i+1}, \beta \gt \lt \alpha_{i}, \alpha_{i+1} \gt \alpha_{i}) \\ & = & r_{\alpha_{i+1}}(\beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_{i}, \beta \gt \alpha_{i}- \lt \alpha_{i+1}, \beta \gt \alpha_{i}) \\ & = & \beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_{i}, \beta \gt \alpha_{i}- \lt \alpha_{i+1}, \beta \gt \alpha_{i}\\ & &\quad - \lt \alpha_{i+1}, \beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_{i}, \beta \gt \alpha_{i}\\ & &\quad - \lt \alpha_{i+1}, \beta \gt \alpha_{i} \gt \alpha_{i+1} \\ & = & \beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_{i+1}, \beta \gt \alpha_{i}- \lt \alpha_i, \beta \gt \alpha_{i}\\ & &\quad - \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}+ \lt \alpha_i, \beta \gt \lt \alpha_{i+1}, \alpha_i \gt \alpha_{i+1}\\ & &\quad + \lt \alpha_{i+1}, \beta \gt \lt \alpha_{i+1}, \alpha_i \gt \alpha_{i+1}\\ & & \quad + \lt \alpha_{i+1}, \beta \gt \lt \alpha_{i+1}, \alpha_{i+1} \gt \alpha_{i+1} \\ & = & \beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_{i}, \beta \gt \alpha_{i}- \lt \alpha_{i+1}, \beta \gt \alpha_{i}\\ & &\quad - \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}+2 \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_{i}, \beta \gt \alpha_{i+1}\\ & &\quad - \lt \alpha_{i+1}, \beta \gt \alpha_{i+1} \\ & = & \beta- \lt \alpha_{i+1}, \beta \gt \alpha_{i+1}- \lt \alpha_{i}, \beta \gt \alpha_i- \lt \alpha_{i+1}, \beta \gt \alpha_{i}\\ & &\quad - \lt \alpha_i, \beta \gt \alpha_{i+1} \\ & = & \beta-( \lt \alpha_{i+1}, \beta \gt + \lt \alpha_{i}, \beta \gt )(\alpha_{i+1}+\alpha_{i}). \end{eqnarray*}

    Hence r_{\alpha_{i+1}}\circ r_{\alpha_i}\circ r_{\alpha_{i+1}}(\beta) = r_{\alpha_{i+1}}\circ r_{\alpha_i}\circ r_{\alpha_{i+1}}(\beta) .

    (iii)

    \begin{eqnarray*} r_{\alpha_i}\circ r_{\alpha_j}(\beta)& = & r_{\alpha_i}\circ(\beta- \lt \alpha_j, \beta \gt \alpha_j) \\ & = & \beta- \lt \alpha_j, \beta \gt \alpha_j- \lt \alpha_i, \beta- \lt \alpha_j, \beta \gt \alpha_j \gt \alpha_i \\ & = & \beta- \lt \alpha_j, \beta \gt \alpha_j- \lt \alpha_i, \beta \gt \alpha_i+ \lt \alpha_j, \beta \gt \lt \alpha_i, \alpha_j \gt \alpha_i \\ & = & \beta- \lt \alpha_j, \beta \gt \alpha_j- \lt \alpha_i, \beta \gt \alpha_i . \end{eqnarray*}
    \begin{eqnarray*} r_{\alpha_j}\circ r_{\alpha_i}(\beta)& = & r_{\alpha_j}\circ(\beta- \lt \alpha_i, \beta \gt \alpha_i) \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_j, \beta- \lt \alpha_i, \beta \gt \alpha_i \gt \alpha_j \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_j, \beta \gt \alpha_j+ \lt \alpha_i, \beta \gt \lt \alpha_j, \alpha_i \gt \alpha_j \\ & = & \beta- \lt \alpha_i, \beta \gt \alpha_i- \lt \alpha_j, \beta \gt \alpha_j . \end{eqnarray*}

    Hence r_{\alpha_i}\circ r_{\alpha_j}(\beta) = r_{\alpha_j}\circ r_{\alpha_i}(\beta) .

    After this point s_i will represent r_{\alpha_i} .

    Let us define the word

    s_{i, j} = \left\{\begin{array}{cc} s_is_{i+1}\cdots s_j & i < j \\ s_i & i = j \\ 1 & i > j. \end{array} \right.

    Theorem 3.2. [4,Theorem 3.1] The reduced Gröbner-Shirshov basis of the coxeter group A_n consists of relation

    s_{i, j}s_i = s_{i+j}s_{i, j} \quad 1\leq i \lt j\leq n

    together with defining relations of A_n .

    The following lemma is equivalent of [4,Lemma 3.2]. The only difference is the order of generators s_1 > s_2 > \ldots s_n in our setting.

    Lemma 3.3. Using elimination of leading words of relations, the reduced elements of A_n are in the form

    s_{{n+1}, j_{n+1}}s_{n, j_n}s_{{n-1}, j_{n-1}}\cdots s_{i, j_i}\cdots s_{1, j_1} 1\leq i\leq j_i+1\leq n+1 .

    Notice that j_{n+1}+1 = n+1 \Longrightarrow j_{n+1} = n and s_{{n+1}, n} = 1 .

    Algorithm 3.1. (Finding Inverse) Let w = s_{n, j_n}s_{n-1, j_{n-1}}\cdots s_{1, j_1} . The inverse of w can be found using following algorithm.

    Invw = \{\};

    Conw = Reverse(w);

    For k = 1 to k = n

    Find maximum sequence in Conw ;

    list = \{s_k, s_{k+1}, s_{k+2}, \ldots, s_{k+j}\} ;

    Invw = list\cup Invw ;

    End For.

    Example 3.4. Let s_{4, 6}s_{3, 5}s_{2, 5}s_{1, 3} . The inverse of its is S_3s_2s_1s_5s_4s_3s_2s_5s_4s_3s_6s_5s_4 .

    Invw = s_{1, 4}

    S_3s_2s_5s_4s_3s_5s_4s_6s_5

    Invw = s_{2, 5}s_{1, 4}

    S_3s_5s_4s_5s_6

    Invw = s_{3, 5}s_{2, 5}s_{1, 4}

    s_5s_6

    Invw = s_{5, 6}s_{3, 5}s_{2, 5}s_{1, 4} .

    Lemma 3.5. Let w = (s_{n, j_n})(s_{n-1, j_{n-1}})\cdots(s_{{i+1}, \; j_{i+1}})(s_{i, j_i})\cdots(s_{1, j_1}) and

    s_{i}w = (s_{n, \overline{j_n}})(s_{n-1, \; \overline{j_{n-1}}})\cdots(s_{{i+1}, \; \overline{j_{i+1}}})(s_{i, \overline{j_i}})\cdots(s_{1, \overline{j_1}}) , where

    s_{i}w = \left\{ \begin{array}{ll} \overline{j_{i+1}} = j_i+1, \; \overline{j_i} = j_{i+1} & \; if \quad j_i < j_{i+1} \\ \overline{j_{i+1}} = j_i, \; \overline{j_i} = j_{i+1}-1 & \; if\quad j_i\geq j_{i+1} \\ \overline{j_k} = j_k & if \quad k\neq i, i+1 \end{array} \right.

    Here if i = n , then we assume j_{n+1} = n .

    Corollary 3.6. Let w = (s_{n, j_n})(s_{n-1, j_{n-1}})\cdots(s_{{i+1}, j_{i+1}})(s_{i, j_i})\cdots(s_{1, j_1}) and

    s_{i-1}(s_{i}w) = (s_{n, \hat{j_n}})(s_{n-1, \widehat{j_{n-1}}})\cdots(s_{{i+1}, \widehat{j_{i+1}}})(s_{i, \widehat{j_i}})\cdots(s_{1, \widehat{j_1}}) , where

    s_{i-1}(s_{i}w) = \left\{ \begin{array}{ll} \widehat{j_{i+1}} = j_i+1, \; \widehat{j_i} = j_{i-1}+1, \; \widehat{j_{i-1}} = j_{i+1} & if \quad j_i < j_{i+1}, \; j_{i-1} < j_{i+1} \\ \widehat{j_{i+1}} = j_i+1, \; \widehat{j_i} = j_{i-1}, \; \widehat{j_{i-1}} = j_{i+1}-1 & if \quad j_i < j_{i+1}, \; j_{i-1}\geq j_{i+1} \\ \widehat{j_{i+1}} = j_i, \; \widehat{j_i} = j_{i-1}+1, \; \widehat{j_{i-1}} = j_{i+1}-1 & if \quad j_i\geq j_{i+1}, \; j_{i-1} < j_{i+1}-1 \\ \widehat{j_{i+1}} = j_i, \; \widehat{j_i} = j_{i-1}, \; \widehat{j_{i-1}} = j_{i+1}-2 & if \quad j_i\geq j_{i+1}, \; j_{i-1}\geq j_{i+1}-1 \\ \widehat{j_k} = j_k & if \quad k\neq i-1, \; i, \; i+1. \end{array} \right.

    Proof. Let \overline{w} = s_iw = (s_{n, \overline{j_n}})(s_{n-1, \overline{j_{n-1}}})\cdots(s_{{i+1}, \overline{j_{i+1}}})(s_{i, \overline{j_i}})\cdots(s_{1, \overline{j_1}}) . Then

    s_{i-1}(\overline{w}) = \left\{ \begin{array}{ll} \widehat{j_i} = \overline{j_{i-1}}+1, \; \widehat{j_{i-1}} = \overline{j_{i}} & if \quad \overline{j_{i-1}} < \overline{j_i} \\ \widehat{j_i} = \overline{j_{i-1}}, \; \widehat{j_{i-1}} = \overline{j_{i}}-1 & if \quad \overline{j_{i-1}}\geq\overline{j_i} \\ \widehat{j_k} = \overline{j_k} & if \quad k\neq i-1, i. \end{array} \right.

    (i) j_i < j_{i+1} \Rightarrow \overline{j_{i+1}} = j_i+1 , \overline{j_i} = j_{i+1} So \overline{j_{i-1}} < \overline{j_i} \Rightarrow j_{i-1} < j_{i+1} , \widehat{j_{i+1}} = \overline{j_{i+1}} = j_i+1, \widehat{j_i} = \overline{j_{i-1}}+1 = j_{i-1}+1 , \widehat{j_{i-1}} = \overline{j_i} = j_{i+1}.

    (ii) j_i < j_{i+1} \Rightarrow \overline{j_{i+1}} = j_i+1 , \overline{j_i} = j_{i+1} So \overline{j_{i-1}}\geq\overline{j_i} \Rightarrow j_{i-1}\geq j_{i+1} , \widehat{j_{i+1}} = \overline{j_{i+1}} = j_i+1, \widehat{j_i} = \overline{j_{i-1}} = j_{i-1} , \widehat{j_{i-1}} = \overline{j_i}-1 = j_{i+1}-1 .

    (iii) j_i\geq j_{i+1} \Rightarrow \overline{j_{i+1}} = j_i , \overline{j_i} = j_{i+1}-1 So \overline{j_{i-1}} < \overline{j_i} \Rightarrow j_{i-1} < j_{i+1} , \widehat{j_{i+1}} = \overline{j_{i+1}} = j_i+1 , \widehat{j_i} = \overline{j_{i-1}} = j_{i-1} , \widehat{j_{i-1}} = \overline{j_i}-1 = j_{i+1}-1 .

    (iv) j_i\geq j_{i+1} \Rightarrow \overline{j_{i+1}} = j_i , \overline{j_i} = j_{i+1}-1 So \overline{j_{i-1}}\geq\overline{j_i} \Rightarrow j_{i-1}\geq j_{i+1}-1 , \widehat{j_{i+1}} = \overline{j_{i+1}} = j_i , \widehat{j_i} = \overline{j_{i-1}} = j_{i-1} , \widehat{j_{i-1}} = \overline{j_i}-1 = j_{i+1}-2 .

    Corollary 3.7. Let w = (s_{n, j_n})(s_{n-1, j_{n-1}})\cdots(s_{{i+1}, j_{i+1}})(s_{i, j_i})\cdots(s_{1, j_1}) and

    s_{i+1}(s_{i}w) = (s_{n, \hat{j_n}})(s_{n-1, \widehat{j_{n-1}}})\cdots(s_{{i+1}, \widehat{j_{i+1}}})(s_{i, \widehat{j_i}})\cdots(s_{1, \widehat{j_1}}) . Then

    s_{i+1}(s_{i}w) = \left\{ \begin{array}{ll} \widehat{j_{i+2}} = j_i+2, \; \widehat{j_{i+1}} = j_{i+2}, \; \widehat{j_{i}} = j_{i+1} & if \quad j_i < j_{i+1}, \; j_{i+1} < j_{i+2} \\ \widehat{j_{i+2}} = j_i+1, \; \widehat{j_{i+1}} = j_{i+2}-1, \; \widehat{j_{i}} = j_{i+1} & if \quad j_i < j_{i+1}, \; j_i+1\geq j_{i+2} \\ \widehat{j_{i+2}} = j_i+1, \; \widehat{j_{i+1}} = j_{i+2}, \; \widehat{j_{i}} = j_{i+1}-1 & if \quad j_i\geq j_{i+1}, \; j_{i} < j_{i+2} \\ \widehat{j_{i+2}} = j_i, \; \widehat{j_{i+1}} = j_{i+2}-1, \; \widehat{j_{i}} = j_{i+1}-1 & if \quad j_i\geq j_{i+1}, \; j_{i}\geq j_{i+2} \\ \widehat{j_k} = j_k & if \quad k\neq i, i+1, i+2. \end{array} \right.

    Proof. Let \overline{w} = s_iw = (s_{n, \overline{j_n}})(s_{n-1, \overline{j_{n-1}}}) \cdots(s_{{i+1}, \overline{j_{i+1}}})(s_{i, \overline{j_i}})\cdots(s_{1, \overline{j_1}}) . Then

    s_{i+1}(\overline{w}) = \left\{ \begin{array}{ll} \widehat{j_{i+2}} = \overline{j_{i+1}}+1, \; \widehat{j_{i+1}} = \overline{j_{i+2}} & if \quad \overline{j_{i+1}} < \overline{j_{i+2}} \\ \widehat{j_{i+2}} = \overline{j_{i+1}}, \; \widehat{j_{i+1}} = \overline{j_{i+2}}-1 & if \quad \overline{j_{i+1}}\geq\overline{j_{i+2}} \\ \widehat{j_k} = \overline{j_k} & if \quad k\neq i+1, i+2. \end{array} \right.

    (i) j_i < j_{i+1} \Rightarrow \overline{j_{i+1}} = j_i+1 , \overline{j_i} = j_{i+1} So \overline{j_{i+1}} < \overline{j_{i+2}} \Rightarrow j_{i}+1 < j_{i+2} , \widehat{j_{i+2}} = \overline{j_{i+1}}+1 = j_i+2 , \widehat{j_{i+1}} = \overline{j_{i+2}} = j_{i+2} , \widehat{j_{i}} = \overline{j_i} = j_{i+1} .

    (ii) j_i < j_{i+1} \Rightarrow \overline{j_{i+1}} = j_i+1 , \overline{j_{i}} = j_{i+1} So \overline{j_{i+1}}\geq\overline{j_{i+2}} \Rightarrow j_{i}+1\geq j_{i+2} , \widehat{j_{i+2}} = \overline{j_{i+1}} = j_i+1 , \widehat{j_{i+1}} = \overline{j_{i+2}}-1 = j_{i+2}-1 , \widehat{j_{i}} = \overline{j_i} = j_{i+1} .

    (iii) j_i\geq j_{i+1} \Rightarrow \overline{j_{i+1}} = j_i , \overline{j_i} = j_{i+1}-1 So \overline{j_{i+1}} < \overline{j_{i+2}} \Rightarrow j_{i} < j_{i+2} , \widehat{j_{i+2}} = \overline{j_{i+1}}+1 = j_i+1 , \widehat{j_{i+1}} = \overline{j_{i+2}} = j_{i+2} , \widehat{j_{i}} = \overline{j_i}-1 = j_{i+1}-1 .

    (iv) j_i \geq j_{i+1} \Rightarrow \overline{j_{i+1}} = j_i , \overline{j_i} = j_{i+1}-1 So \overline{j_{i+1}}\geq\overline{j_{i+2}} \Rightarrow j_{i}\geq j_{i+2} , \widehat{j_{i+2}} = \overline{j_{i+1}} = j_i , \widehat{j_{i+1}} = \overline{j_{i+2}}-1 = j_{i+2}-1 , \widehat{j_{i}} = \overline{j_i} = j_{i+1}-1 .

    Using Lemma 3.3 and definitions of A^i and r_i operators, we can obtain the followings.

    Lemma 3.8. Let w = (s_{n, j_n})(s_{n-1, j_{n-1}})\cdots(s_{{i+1}, \; j_{i+1}})(s_{i, j_i})\cdots(s_{1, j_1}) . Then

    A^{i}({\varepsilon}^w) = \left\{ \begin{array}{ll} {\varepsilon}^{w_1} \quad if \quad j_i\geq j_{i+1} \\ 0 \quad if \quad j_i < j_{i+1}, \\ \end{array} \right.

    where w_1 = (s_{n, \overline{j_n}})(s_{n-1, \overline{j_{n-1}}})\cdots(s_{{i+1}, \overline{j_{i+1}}})(s_{i, \overline{j_i}})\cdots(s_{1, \overline{j_1}}) with \overline{j_{i+1}} = j_i , \quad \overline{j_{i}} = j_{i+1}-1 and \overline{j_k} = j_k if \quad k\neq i, i+1 .

    Lemma 3.9. r_{i}({\varepsilon}^{s_j}) = \left\{ \begin{array}{ll} {\varepsilon}^{s_{i-1}}-{\varepsilon}^{s_i}-{\varepsilon}^{s_{i+1}} \quad if \quad i = j \\ {\varepsilon}^{s_j} \quad if \quad i\neq j. \\ \end{array} \right.

    The integral cohomology of SU_{n+1}/T is generated by Schubert classes indexed

    W = \{s_{nj_n}s_{n-1, j_{n-1}}\ldots s_{1j_1}: \quad j_i = 0 \quad \mathrm{or} \quad i\leq j_i\leq n\}.

    Let x_i = {\varepsilon}^{r_i}\in H^2(SU_{n+1}/T, \mathbb{Z}). We define an order between generators of the integral cohomology of SU_{n+1}/T . Since each element {\varepsilon}^{s_{nj_n}s_{n-1, j_{n-1}}\ldots s_{ij_i}\ldots s_{1j_{1}}} can be represented by an n -tuple (j_n-n+1, j_{n-1}-(n-1)+1, \ldots, j_i-i+1, \ldots, j_1-1+1), we can define an order between n -tuples.

    Definition 3.10. (Graded Inverse Lexicographic Order) Let \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) and \beta = (\beta_1, \beta_2, \ldots, \beta_n)\in \mathbb{Z}^n_{\geq0} . We say \alpha > \beta if |\alpha| = \alpha_1+\alpha_2+\ldots\alpha_n > |\beta| = \beta_1+\beta_2+\ldots\beta_n or |\alpha| = |\beta| and in the vector difference \alpha-\beta\in\mathbb{Z}^n , the right-most nonzero entry is positive. We will write {\varepsilon}^{s_{nj_n}s_{n-1, j_{n-1}}\ldots s_{ij_i}\ldots s_{1j_{1}}} > {\varepsilon}^{s_{nk_n}s_{n-1, j_{k-1}}\ldots s_{ik_i}\ldots s_{1j_{1}}} if (j_n-n+1, j_{n-1}-(n-1)+1, \ldots, j_i-i-1, \ldots, j_1-1+1) > (k_n-n+1, k_{n-1}-(n-1)+1, \ldots, k_i-i-1, \ldots, k_1-1+1) .

    Example 3.11. {\varepsilon}^{s_{35}s_{23}s_{14}} > {\varepsilon}^{s_{35}s_{24}s_{13}} since (3, 2, 4) > (3, 3, 3) in graded inverse lexicographic order.

    We will try to find a quotient ring \mathbb{Z}[x_1, x_2, \ldots, x_n]/I which is isomorphic to H^*(SU_{n+1}/T, \mathbb{Z}) . We also define an order between monomials as follows.

    Definition 3.12. We say x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n} > x_1^{\beta_1}x_2^{\beta_2}\cdots x_n^{\beta_n} if |\alpha| = \alpha_1+\alpha_2+\cdots+\alpha_n > |\beta| = \beta_1+\beta_2+\cdots+\beta_n or |\alpha| = |\beta| and in the vector difference \alpha-\beta\in\mathbb{Z}^n the left-most non-zero entry is negative.

    Example 3.13. x_1^4x_2^2 x_3^3 < x_1^3 x_2^3 x_3^3 , since (4, 2, 3)-(3, 3, 3) = (1, -1, 0) .

    Lemma 3.14. x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_n^{\alpha_n} = {\varepsilon}^{s_{n\alpha_n}s_{n-1, \alpha_{n-1}}\ldots s_{i\alpha_i}\ldots s_{1\alpha_{1}}}+\mathrm{lower}\; \mathrm{terms}.

    Proof. To prove this, we use induction on degree of the monomials. By definition x_i = {\varepsilon}^{s_i} . Let us compute x_ix_j = {\varepsilon}^{s_i}{\varepsilon}^{s_j} . Here we may assume that i\leq j . If j-i > 1 , the inverse of s_is_j is s_is_j . Hence

    P_{s_is_j}^{s_js_i} = r_jA^i({\varepsilon}^{s_i}) = r_j(1) = 1

    in the cup product. If j = i+1 , the inverse of s_{i+1}s_i is s_is_{i+1} . In this case

    P_{s_i, s_{i+1}} = A^ir_{i+1}({\varepsilon}^{s_i}) = A^i({\varepsilon}^{s_i}) = {\varepsilon}^{\{\}} = 1.

    If i = j , then we have to consider the word s_{i, {i+1}} . Its inverse s_{i+1}s_i and

    P_{s_is_i}^{s_{i, {i+1}}} = r_{i+1}A^i({\varepsilon}^{s_i}) = r_{i+1}(1) = 1.

    Now we have to show that P_{s_is_j}^{s_ks_l} = 0 if {\varepsilon}^{s_ks_l} > {\varepsilon}^{s_js_i} . By definition of cup product the coefficient of {\varepsilon}^{s_ks_l} is not zero only if s_i\rightarrow s_ks_l and s_j\rightarrow s_ks_l . However, this is possible only if s_ks_l = s_js_i or s_ks_l = s_{i, i+1} when j = i+1 . Clearly {\varepsilon}^{s_is_{i+1}} < {\varepsilon}^{s_{i+1}s_i} . Hence {\varepsilon}^{s_i}{\varepsilon}^{s_{i+1}} = {\varepsilon}^{s_{i+1}s_i}+\mathrm{lower}\; \mathrm{terms} and {\varepsilon}^{s_i}{\varepsilon} ^{s_j} = {\varepsilon}^{s_j}{\varepsilon}^{s_i} if j-i > 1 . In the case i = j , we have to look elements s_i s_k and s_k s_i . The inverse of s_ks_i is equal to s_ks_i itself if k-i > 1 , hence

    P_{s_is_j}^{s_ks_i} = A^k r_i({\varepsilon}^{s_i}) = A^k({\varepsilon}^{s_{i-1}}-{\varepsilon}^{s_i}+{\varepsilon}^{s_{i+1}}) = 0

    since k-i > 1 . Clearly {\varepsilon}^{s_is_k} < {\varepsilon}^{s_is_{i+1}} if k < i . Hence {\varepsilon}^{s_i}{\varepsilon}^{s_i} = {\varepsilon}^{s_is_{i+1}}+\mathrm{lower}\; \mathrm{terms} .

    Assume that x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_n^{\alpha_n} = {\varepsilon}^{s_{n\alpha_n}s_{n-1, \alpha_{n-1}}\ldots s_{i\alpha_i}\ldots s_{1\alpha_{1}}}+\mathrm{lower}\; \mathrm{terms} .

    We have to show x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_i^{\alpha_i+1}\ldots x_n^{\alpha_n} = {\varepsilon}^{s_{n\alpha_n}s_{n-1, \alpha_{n-1}}\ldots s_{i\alpha_i+1}\ldots s_{1\alpha_{1}}}+\mathrm{lower}\; \mathrm{terms} by Bruhat ordering.

    s_{n\alpha_n}s_{n-1, \alpha_{n-1}}\ldots s_{i\alpha_i+1}\ldots s_{1\alpha_{1}}\rightarrow w' only if w' = s_{n\overline{\alpha_n}}s_{n-1, \overline{\alpha_{n-1}}}\ldots s_{i\overline{\alpha_i}}\ldots s_{1\overline{\alpha_{1}}} where there exists an index j for which \overline{\alpha_j} = \alpha_j+1 and \overline{\alpha_k} = \alpha_k if k\neq j .

    By given ordering

    w' = s_{n\overline{\alpha_n}}s_{n-1, \overline{\alpha_{n-1}}}\ldots s_{i\overline{\alpha_i}}\ldots s_{1\overline{\alpha_{1}}} \gt s_{n\alpha_n}s_{n-1, \alpha_{n-1}}\ldots s_{i\alpha_i+1}\ldots s_{1\alpha_{1}}.

    If j > i , then, by Algorithm 1 , in w'^{-1} , we will not have a subsequence s_{j-1}, s_{j-2}\ldots s_i after the elements s_j . Hence in the cup product before applying A^j we will not have the term {\varepsilon}^{s_j} . It means P_{s_i, w}^{w'} = 0.

    If j = i , then, again by Algorithm 1 , in w'^{-1} we will not have a subsequence s_{j-1}, s_{j-2}\ldots s_i after the elements s_j . Hence in the cup product before applying A^j we will not have the term {\varepsilon}^{s_j} . It means P_{s_i, w}^{w'} = 1 if and only if j > i .

    Example 3.15. Let l = 3 ,

    x_1x_2x_3 = {\varepsilon}^{s_3s_2s_1}+\mathrm{lower}\; \mathrm{terms} .

    x_1^2x_2x_3 = {\varepsilon}^{s_3s_2s_{12}}+\mathrm{lower}\; \mathrm{terms} .

    Then we have {\varepsilon}^{s_3s_{23}s_1} > {\varepsilon}^{s_3s_2s_{12}} > {\varepsilon}^{s_{23}s_{12}} > {\varepsilon}^{s_3s_{13}} > {\varepsilon}^{s_2s_{13}} . Since the inverse of s_3s_{23}s_1 is s_3s_{13} and the inverse of s_3s_2s_1 is s_{13} , A_3r_1r_2r_3({\varepsilon}^{s_1}) = A_3r_1({\varepsilon}^{s_1}) = A_3(-{\varepsilon}^{s_1}+{\varepsilon}^{s_2}) = 0 .

    Similarly, since the inverse of s_3s_2s_{12} is s_2s_{13} , A_2r_1r_2r_3({\varepsilon}^{s_1}) = A_2r_1({\varepsilon}^{s_1}) = A_2(-{\varepsilon}^{s_1}+{\varepsilon}^{s_2}) = 1 .

    Before finding the quotient ring \mathbb{Z}[x_1, \ldots, x_n]/I , we give some information about ring \Bbbk[x_1, \ldots, x_n]/I where \Bbbk is a field. Fix a monomial ordering on \Bbbk[x_1, \ldots, x_n] . Let f\in \Bbbk[x_1, \ldots, x_n] . The leading monomial of f , denoted by LM(f) , is the highest degree monomial of f . The coefficient of LM(f) is called leading coefficient of f and denoted by LC(f) . The leading term of f , LT(f) = LC(f) LM(f) .

    Let I\subseteq k[x_1, \ldots, x_n] be an ideal. Define LT(I) = \{LT(f): f\in I\} . Let < LT(I) > be an ideal generated by LT(I) .

    Proposition 3.16. [9,Section 5.3,Propostions 1 and 4]

    (i) Every f\in \Bbbk[x_1, \ldots, x_n] is congruent modulo I to a unique polynomial r which is a \Bbbk -linear combination of the monomials in the complement of < LT(I) > .

    (ii) The elements of \{x^\alpha: x^\alpha\not\in < LT(I) > \} are linearly independent modulo I .

    (iii) \Bbbk[x_1, \ldots, x_n]/I is isomorphic as a \Bbbk-vector space to

    S = {\operatorname{Span}}\{x^\alpha: x^\alpha\not\in \lt LT(I) \gt \}.

    Theorem 3.17. [9,Section 5.3,Theorem 6] Let I\subseteq \Bbbk[x_1, \ldots, x_n] be an ideal.

    (i) The \Bbbk -vector space \Bbbk[x_1, \ldots, x_n]/I is finite dimensional.

    (ii) For each i , 1\leq i\leq n , there is a polynomial f_i\in I such that LM(f_i) = x_i^{m_i} for some positive integer m_i .

    Theorem 3.18. H^*(SU_{n+1}/T, \mathbb{Z}) isomorphic to \mathbb{Z}[x_1, x_2, \ldots, x_n]/ < f_1, f_2, \ldots, f_n > where LT(f_i) = x_{i}^{n-i+2} with respect to monomial order given by Definition 3.12 .

    Proof. Let I be the ideal such that H^*(SU_{n+1}/T, \mathbb R)\cong\mathbb R[\alpha_1, \alpha_2, \ldots, \alpha_n]/I . Since we found one to one correspondence between length l elements of H^*(SU_{n+1}/T, \mathbb Z) and monomials x_{1}^{\alpha_1}x_{2}^{\alpha_2}\cdots x_{n}^{\alpha_n} , where \alpha_1+\alpha_2+\cdots \alpha_n = l and for each i , 1\leq i\leq n , \alpha_i\leq n-i+1 , there should be a polynomial f_i \in I such that LT(f_i) = x_{i}^{n-i+2} .

    Example 3.19. Let n = 3 . Then we have

    \alpha_i\leq n-i+1 , i = 1, 2, 3 ;

    \alpha_1\leq 3 , \alpha_2\leq 2 , \alpha_3\leq 1 .

    For l = 1;\; x_1, \; x_2, \; x_3 ; and

    for l = 2;\; x_1^2, \; x_1x_2, \; x_1x_3, \; x_2x_3, \; x_2^2 . So we must have a polynomial f_3 with LM(f_3) = x_3^2 .

    For l = 3;\; x_1^3, \; x_1^2x_2, \; x_1^2x_3, \; x_1x_2x_3, \; x_1x_2^2, \; x_2^2x_3 , so

    we must have a polynomial f_2 with LM(f_2) = x_2^3 .

    For l = 4;\; x_1^3x_2, \; x_1^3x_3, \; x_1^2x_2x_3, \; x_1^2x_2^2, \; x_1x_2^2x_3 , so

    we must have a polynomial f_1 with LM(f_1) = x_1^4 .

    The complex dimension of SU_{n+1} / T is equal to (n+1)n / 2 . So the highest element has length of (n+1)n/2 .

    Since the unique highest element has length of \frac{n(n+1)}{2} , we now give the result about the multiplication of elements of length k and of length \frac{n(n+1)}{2}-k .

    Theorem 3.20. Let A = {\varepsilon}^{s_{nj_{n}}s_{n-1, j_{n-1}}\cdots s_{1j_{1}}} be an element of length k and B = {\varepsilon}^{s_{np_{n}}s_{n-1, p_{n-1}}\cdots s_{1p_{1}}} be an element of length \frac{n(n+1)}{2}-k . The corresponding polynomials in \mathbb{Z}[x_1, x_2, \ldots, x_n]/ < f_1, f_2, \ldots, f_n > has leading monomials

    x_{1}^{j_1-1+1}x_{2}^{j_2-2+1}\cdots x_{i}^{j_i-i+1}\cdots x_{1}^{j_n-n+1} and x_{1}^{p_1-1+1}x_{2}^{p_1-2+1}\cdots x_{1}^{p_n-n+1} , respectively. Then

    A\cdot B = \left\{ \begin{array}{ll} {\varepsilon}^{s_{n, n}s_{n-1, n}, \ldots, s_{in}, \ldots, s_{1n}}, & if \; j_i+p_i+1 = n+i; \\ 0, & if \; j_i+p_i+1\neq n+i. \end{array} \right.

    Proof. The unique highest degree monomial in \mathbb{Z}[x_1, x_2, \ldots, x_n]/ < f_1, f_2, \ldots, f_n > is x_{1}^{n}x_{2}^{n-1}\cdots x_{i}^{n-i+1}\cdots x_{n} . The multiplication of leading monomials of corresponding monomials of A and B produce the monomial

    x_{1}^{j_1+p_1}x_{2}^{j_2+p_2-2}\cdots x_{i}^{j_i+p_i-2i+2}\cdots x_{n}^{j_n+p_n-2n+2}.

    If j_i+p_i-2i+2 = n-i+1\rightarrow j_i+ p_i+1 = n+i for each i , i\leq 1\leq n , then the multiplication gives the x_{1}^{n}x_{2}^{n-1}\ldots x_{n} . Since this monomial correspondence the element {\varepsilon}^{s_{n, n}s_{n-1, n}\cdots s_{in}\cdots s_{1n}} , A\cdot B = {\varepsilon}^{s_{n, n}s_{n-1, n}\cdots s_{1n}} . If j_i+p_i+1\neq n+i, then the leading monomial and the monomials of lower degree must reduce to zero modulo < f_1, f_2, \ldots, f_n > in \Bbbk[x_1, x_2, \ldots, x_n] when we apply the division algorithm. Hence A\cdot B = 0 .

    Now we can give the whole computation of the quotient ring \mathbb{Z}[x_1, x_2, x_3]/ < f_1, f_2, f_3 > .

    Example 3.21. Let x_1 = {\varepsilon}^{s_1} , x_2 = {\varepsilon}^{s_2} , x_3 = {\varepsilon}^{s_3} .

    For l = 2 , we have

    \begin{eqnarray*} x_2x_3 & = & {\varepsilon}^{s_3s_2}+{\varepsilon}^{s_2s_3} \\ x_2^2 & = & {\varepsilon}^{s_2s_3}+{\varepsilon}^{s_2s_1} \\ x_1x_3 & = & {\varepsilon}^{s_3s_1} \\ x_1x_2 & = & {\varepsilon}^{s_2s_1}+{\varepsilon}^{s_1s_2} \\ x_1^2 & = & {\varepsilon}^{s_1s_2}, \end{eqnarray*}

    and

    \left(\begin{array}{c} x_2x_3 \\ x_2^2 \\ x_1x_3 \\ x_1x_2 \\ x_1^2 \\ \end{array} \right) = M \left(\begin{array}{c} {\varepsilon}^{s_3s_2} \\ {\varepsilon}^{s_2s_3} \\ {\varepsilon}^{s_3s_1} \\ {\varepsilon}^{s_2s_1} \\ {\varepsilon}^{s_1s_2} \\ \end{array} \right) \quad and \quad \left(\begin{array}{c} {\varepsilon}^{s_3s_2} \\ {\varepsilon}^{s_2s_3} \\ {\varepsilon}^{s_3s_1} \\ {\varepsilon}^{s_2s_1} \\ {\varepsilon}^{s_1s_2} \\ \end{array} \right) = M^{-1} \left(\begin{array}{c} x_2x_3 \\ x_2^2 \\ x_1x_3 \\ x_1x_2 \\ x_1^2 \\ \end{array} \right) , where

    M = \left(\begin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right) \quad M^{-1} = \left(\begin{array}{ccccc} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right). Then we have

    \begin{eqnarray*} {\varepsilon}^{s_3s_2} & = & x_2x_3-x_2^2+x_1x_2-x_1^2 \\ {\varepsilon}^{s_2s_3} & = & x_2^2-x_1x_2+x_2^2\\ {\varepsilon}^{s_3s_1} & = & x_1x_3 \\ {\varepsilon}^{s_2s_1} & = & x_1x_2-x_1^2 \\ {\varepsilon}^{s_1s_2} & = & x_1^2. \end{eqnarray*}

    Here we must have a relation involving x_3^2 and we have it as

    x_3^2 = {\varepsilon}^{s_3s_2} = x_2x_3-x_2^2+x_1x_2-x_1^2.

    For l = 3 ;

    \begin{eqnarray*} x_2^2x_3& = & {\varepsilon}^{s_3s_2s_3}+{\varepsilon}^{s_3s_2s_1}+{\varepsilon}^{s_2s_3s_1} \\ x_1x_2x_3 & = & {\varepsilon}^{s_3s_2s_1}+{\varepsilon}^{s_2s_3s_1}+{\varepsilon}^{s_3s_1s_2}+{\varepsilon}^{s_1s_2s_3} \\ x_1x_2^2 & = & {\varepsilon}^{s_2s_3s_1}+{\varepsilon}^{s_2s_1s_2}+{\varepsilon}^{s_1s_2s_3} \\ x_1^2x_3 & = & {\varepsilon}^{s_3s_1s_2}+{\varepsilon}^{s_1s_2s_3} \\ x_1^2x_2 & = & {\varepsilon}^{s_2s_1s_2}+{\varepsilon}^{s_1s_2s_3} \\ x_1^3 & = & {\varepsilon}^{s_1s_2s_3} \end{eqnarray*}

    and

    \left(\begin{array}{c} x_2^2x_3 \\ x_1x_2x_3 \\ x_1x_2^2 \\ x_1^2x_3 \\ x_1^2x_2 \\ x_1^3 \\ \end{array} \right) = M \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3} \\ {\varepsilon}^{s_3s_2s_1} \\ {\varepsilon}^{s_2s_3s_1} \\ {\varepsilon}^{s_3s_1s_2} \\ {\varepsilon}^{s_2s_1s_2} \\ {\varepsilon}^{s_1s_2s_3} \\ \end{array} \right) \quad and \quad \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3} \\ {\varepsilon}^{s_3s_2s_1} \\ {\varepsilon}^{s_2s_3s_1} \\ {\varepsilon}^{s_3s_1s_2} \\ {\varepsilon}^{s_2s_1s_2} \\ {\varepsilon}^{s_1s_2s_3} \\ \end{array} \right) = M^{-1} \left(\begin{array}{c} x_2^2x_3 \\ x_1x_2x_3 \\ x_1x_2^2 \\ x_1^2x_3 \\ x_1^2x_2 \\ x_1^3 \\ \end{array} \right) , where

    M = \left(\begin{array}{cccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right) \quad M^{-1} = \left(\begin{array}{cccccc} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right).

    Then we have

    \begin{eqnarray*} {\varepsilon}^{s_3s_2s_3} & = & x_2^2x_3-x_1x_2x_3+x_1^2x_3 \\ {\varepsilon}^{s_3s_2s_1} & = & x_1x_2x_3-x_1x_2^2-x_1^2x_3+x_1^2x_2 \\ {\varepsilon}^{s_2s_3s_1} & = & x_1x_2^2-x_1^2x_2\\ {\varepsilon}^{s_3s_1s_2} & = & x_1^2x_3-x_1^3 \\ {\varepsilon}^{s_2s_1s_2} & = & x_1^2x_2-x_1^3 \\ {\varepsilon}^{s_1s_2s_3} & = & x_1^3. \end{eqnarray*}

    Here we must have a relation involving x_2^3 and we now we have it as

    x_2^3 = 2{\varepsilon}^{s_2s_3s_1} = 2(x_1x_2^2-x_1^2x_2).

    For l = 4 ; we have

    \begin{eqnarray*} x_1x_2^2x_3 & = & {\varepsilon}^{s_3s_2s_3s_1}+{\varepsilon}^{s_3s_2s_1s_2}+ 2{\varepsilon}^{s_2s_3s_1s_2}+2{\varepsilon}^{s_3s_1s_2s_3} \\ x_1^2x_2x_3 & = & {\varepsilon}^{s_3s_2s_1s_2}+{\varepsilon}^{s_2s_3s_1s_2}+ {\varepsilon}^{s_3s_1s_2s_3}+{\varepsilon}^{s_2s_1s_2s_3} \\ x_1^2x_2^2 & = & {\varepsilon}^{s_2s_3s_1s_2}+{\varepsilon}^{s_2s_1s_2s_3} \\ x_1^3x_3 & = & {\varepsilon}^{s_3s_1s_2s_3} \\ x_1^3x_2 & = & {\varepsilon}^{s_2s_1s_2s_3} \end{eqnarray*}

    and

    \left(\begin{array}{c} x_1x_2^2x_3 \\ x_1^2x_2x_3 \\ x_1^2x_2^2 \\ x_1^3x_3 \\ x_1^3x_2 \\ \end{array} \right) = M \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3s_1} \\ {\varepsilon}^{s_3s_2s_1s_2} \\ {\varepsilon}^{s_2s_3s_1s_2} \\ {\varepsilon}^{s_3s_1s_2s_3} \\ {\varepsilon}^{s_2s_1s_2s_3} \\ \end{array} \right) \quad and \quad \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3s_1} \\ {\varepsilon}^{s_3s_2s_1s_2} \\ {\varepsilon}^{s_2s_3s_1s_2} \\ {\varepsilon}^{s_3s_1s_2s_3} \\ {\varepsilon}^{s_2s_1s_2s_3} \\ \end{array} \right) = M^{-1} \left(\begin{array}{c} x_1x_2^2x_3 \\ x_1^2x_2x_3 \\ x_1^2x_2^2 \\ x_1^3x_3 \\ x_1^3x_2 \\ \end{array} \right) , where

    M = \left(\begin{array}{ccccc} 1 & 1 & 2 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right) \quad M^{-1} = \left(\begin{array}{ccccc} 1 & -1 & -1 & -1 & 2 \\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array} \right).

    Then

    \begin{eqnarray*} {\varepsilon}^{s_3s_2s_3s_1} & = & x_1x_2^2x_3-x_1^2x_2x_3-x_1^2x_2^2-x_1^3x_3+2x_1^3x_2 \\ {\varepsilon}^{s_3s_2s_1s_2} & = & x_1^2x_2x_3-x_1^2x_2^2-x_1^3x_3\\ {\varepsilon}^{s_2s_3s_1s_2} & = & x_1^2x_2^2-x_1^3x_2 \\ {\varepsilon}^{s_3s_1s_2s_3} & = & x_1^3x_3\\ {\varepsilon}^{s_2s_1s_2s_3} & = & x_1^3x_2. \end{eqnarray*}

    We must have a relation involving x_1^4 , which is x_1x_1^3 = {\varepsilon}^{s_1}.{\varepsilon}^{s_1s_2s_3} = 0 .

    For l = 5 ;

    \begin{eqnarray*} x_1^2x_2^2x_3& = & {\varepsilon}^{s_3s_2s_3s_1s_2}+{\varepsilon}^{s_3s_2s_1s_2s_3}+{\varepsilon}^{s_2s_3s_1s_2s_3} \\ x_1^3x_2x_3 & = & {\varepsilon}^{s_3s_2s_1s_2s_3}+{\varepsilon}^{s_2s_3s_1s_2s_3} \\ x_1^3x_2^2 & = & {\varepsilon}^{s_2s_3s_1s_2s_3} \end{eqnarray*}

    and

    \left(\begin{array}{c} x_1^2x_2^2x_3 \\ x_1^3x_2x_3 \\ x_1^3x_2^2 \end{array} \right) = M \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3s_1s_2} \\ {\varepsilon}^{s_3s_2s_1s_2s_3} \\ {\varepsilon}^{s_2s_3s_1s_2s_3} \end{array} \right) \quad and \quad \left(\begin{array}{c} {\varepsilon}^{s_3s_2s_3s_1s_2} \\ {\varepsilon}^{s_3s_2s_1s_2s_3} \\ {\varepsilon}^{s_2s_3s_1s_2s_3} \end{array} \right) = M^{-1} \left(\begin{array}{c} x_1^2x_2^2x_3 \\ x_1^3x_2x_3 \\ x_1^3x_2^2 \end{array} \right) , where

    M = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right) \quad M^{-1} = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ \end{array} \right). So

    \begin{eqnarray*} {\varepsilon}^{s_3s_2s_3s_1s_2} & = & x_1^2x_2^2x_3-x_1^3x_2x_3 \\ {\varepsilon}^{s_3s_2s_1s_2s_3} & = & x_1^3x_2x_3-x_1^3x_2^2 \\ {\varepsilon}^{s_2s_3s_1s_2s_3} & = & x_1^3x_2^2. \end{eqnarray*}

    Hence we don't have any relation.

    For l = 6 ;

    x_1^3x_2^2x_3 = {\varepsilon}^{s_3s_2s_3s_1s_2s_3} and {\varepsilon}^{s_3s_2s_3s_1s_2s_3} = x_1^3x_2^2x_3 .

    Now let us multiple elements with lengths of k and 6-k .

    First M_0 = 1 and |\det(M_0)| = 1 .

    Now we will calculate Reidemeister torsion of SU_4 /T by using above multiplication. From multiplication of the second cohomology, we have M_2 = \begin{pmatrix}0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0\end{pmatrix} and |\det(M_2)| = 1.

    \underline{Degree \quad 2 * Degree \quad 4}

    To calculate Reidemeister torsion of SU_4 /T we need multiplication of fourth cohomology bases elements and then we have M_4 = \begin{pmatrix}0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0\end{pmatrix} and |\det(M_4)| = 1.

    \underline{Degree \quad 3 * Degree \quad 3}

    To calculate Reidemeister torsion of SU_4 /T we need multiplication of sixth cohomology bases elements and then we have M_6 = \begin{pmatrix}0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0 & 0\end{pmatrix} and |\det(M_6)| = 1.

    In general the matrix M_k represents the intersection pairing between the homology classes of degrees k and (n+1)n - k with real coefficient. So in general |\det(M_{\frac{n(n+1)}{2}})| = 1. Hence the Reidemeister torsion of SU_4 /T is 1 by the Reidmeister torsion formula for manifolds.

    By Theorems 1.1, 3.18 and 3.20, we obtain the following result.

    Theorem 3.22. The Reidemeister torsion of SU_{n+1} /T is always 1 for any positive integer n with n\geq 3 .

    Remark 3.23. We should note that we found this result by Schubert calculus. But, we choose any basis to define Reidemeister torsion. There are many bases for the Reidemeister torsion to be 1 . Why we focus on this basis to compute the Reidemeister torsion is that we can use Schubert calculus and we have cup product formula in this algebra in terms of Schubert differential forms. Otherwise these computations are not easy. Also by Groebner techniques we can find the normal form of all elenents of Weyl group indexing our basis. So computations in this algebra is avaliable.

    Remark 3.24. In our work, we consider flag manifold SU_{n + 1}/T for n \geq 3. Then we consider the Schubert cells \{\mathfrak{c}_p\} and the corresponding homology basis a \{ \mathfrak{h}_p\} associated to \{\mathfrak{c}_p\} . We caculated that \mathrm{Tor}(\mathcal{C}_{\ast}(\mathbf{K}), \{\mathfrak{c}_p\}_{p = 0}^n, \{\mathfrak{h}_p\}_{p = 0}^n) = 1 .

    If we consider the same cell-decomposition but other homology basis \{\mathfrak{h}'_p\} then by the change-base-formula (1.4), then we have

    \begin{equation*} \text{Tor}(\mathcal{C}_{\ast}, \{\mathfrak{c}_p\}_{p = 0}^n, \{\mathfrak{h}'_p\}_{p = 0}^n) = \prod\limits_{p = 0}^n\left(\dfrac{1}{[\frak{h}'_p, \frak{h}_p]}\right)^{(-1)^p}\cdot \text{Tor}(\mathcal{C}_{\ast}, \{\mathfrak{c}_p\}_{p = 0}^n, \{\mathfrak{h}_p\}_{p = 0}^n). \end{equation*}

    Remark 3.25. In the presented paper M = K/T is a flag manifold, where K = SU_{n+1} and T is the maximal torus of K. Clearly, M is a smooth orientable even dimensional(complex) closed manifold. So there is Poincaré (or Hodge) duality. Therefore, we can apply Theorem 1.1 for M = K/T .

    We would like to express our sincere gratitude to the anonymous referee for his/her helpful comments that will help to improve the quality of the manuscript.

    The authors declare that they have no competing interests.



    [1] H. Basbaydar, Calculation of Reidmesster torsion of flag manifolds of compact semi-simple Lie groups, Master Thesis, Abant Izzet Baysal University, 2013.
    [2] J. M. Bismut and H. Gillet, C. Soulé, Analytic torsion and holomorphic determinant bundles I. Bott-Chern forms and analytic torsion, Commu. Math. Phys., 115 (1988), 49-78.
    [3] J. M. Bismut and F. Labourie, Symplectic geometry and the Verlinde formulas, Surv. Differ. Geom., 5 (1999), 97-311.
    [4] L. A. Bokut and L. S. Shiao, Gröbner-Shirshov bases for coxeter groups, Comm. Algebra, 29 (2001), 4305-4319.
    [5] A. S. Buch, A. Kresch, H. Tamvakis, Gromov-Witten Invariants on Grassmannaians, J. Amer. Math. Soc., 16 (2003), 901-915.
    [6] A. S. Buch, A. Kresch, H. Tamvakis, Quantum Pieri rules for isotropic Grassmannians, Invent. Math., 178 (2009), 345-405.
    [7] T. A. Chapman, Hilbert cube manifolds and the invariance of Whitehead torsion, Bull. Am. Math. Soc., 79 (1973), 52-56.
    [8] T. A. Chapman, Topological invariance of Whitehead torsion, Am. J. Math., 96 (1974), 488-497.
    [9] D. Cox, J. Little, D. O'Shea, Ideals, Varieties and Algorithms, Springer-Verleg, New York, 1992.
    [10] G. de Rham, Reidemeister's torsion invariant and rotation of Sn,, Differential Analysis, Bombay Colloq, (1964), 27-36.
    [11] W. Franz, Über die Torsion einer Überdeckung, J. Reine Angew. Math., 173 (1935), 245-254.
    [12] W. Fulton and P. Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, Vol. 1689, Springer-Verlag, Berlin, 1998.
    [13] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Willey Library Edition, New York, 1994.
    [14] R. C. Kirby and L. C. Siebenmann, On triangulation of manifolds and Haupvermutung, Bull. Am. Math. Soc., 75 (1969), 742-749.
    [15] B. Kostant and S. Kumar, The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Adv. Math., 62 (1986), 187-237.
    [16] J. Milnor, A duality theorem for Reidemeister torsion, Ann. Math., 76 (1962), 137-147.
    [17] J. Milnor, Whitehead torsion, Bull. Am. Soc., 72 (1966), 358-426.
    [18] J. Milnor, Infinite cyclic covers, Topology of Manifolds, in Michigan, Prindle, Weber & Schmidt, Boston, (1967), 115-133.
    [19] C. Özel, On the cohomology ring of the infinite flag manifold LG/T, Turk. J. Math., 22 (1998), 415-448.
    [20] K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 102-109.
    [21] Y. Sözen, On Reidemeister torsion of a symplectic complex, Osaka J. Math., 45 (2008), 1-39.
    [22] Y. Sözen, On Fubini-Study form and Reidemeister torsion, Topol. Appl., 156 (2009), 951-955.
    [23] Y. Sözen, Symplectic chain complex and Reidemeister torsion of compact manifolds, Math. Scand., 111 (2012), 65-91.
    [24] Y. Sözen, A note on Reidemeister torsion and period matrix of Riemann surfaces, Math. Slovaca, (to appear).
    [25] H. Tamvakis, Quantum cohomology of isotropic Grassmannians, Geometric Methods in Algebra and Number Theory, Progress in Math, Birkhäuser, Boston, 235 (2005), 311-338.
    [26] H. Tamvakis, Gromov-Witten invariants and quantum cohomology of Grassmannians, Topics in Cohomological Studies of Algebraic Varieties, Trends in Math., Birkhäuser, Boston, (2005), 271-297.
    [27] E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys., 141 (1991), 153-209.
    [28] W. Zhe-Xian, Introduction to Kač-Moody Algebra, World Scientific, Singapore, 1991.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3812) PDF downloads(85) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog