Citation: Lei Liu, Zhefeng Xu. Mean value of the Hardy sums over short intervals[J]. AIMS Mathematics, 2020, 5(6): 5551-5563. doi: 10.3934/math.2020356
[1] | Wenjia Guo, Yuankui Ma, Tianping Zhang . New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095 |
[2] | Jiankang Wang, Zhefeng Xu, Minmin Jia . Distribution of values of Hardy sums over Chebyshev polynomials. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186 |
[3] | Jiankang Wang, Zhefeng Xu, Minmin Jia . On the generalized Cochrane sum with Dirichlet characters. AIMS Mathematics, 2023, 8(12): 30182-30193. doi: 10.3934/math.20231542 |
[4] | Zhuoyu Chen, Wenpeng Zhang . A new reciprocity formula of Dedekind sums and its applications. AIMS Mathematics, 2024, 9(5): 12814-12824. doi: 10.3934/math.2024626 |
[5] | Xuan Wang, Li Wang, Guohui Chen . The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864 |
[6] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[7] | Huimin Wang, Liqun Hu . Sums of the higher divisor function of diagonal homogeneous forms in short intervals. AIMS Mathematics, 2023, 8(10): 22577-22592. doi: 10.3934/math.20231150 |
[8] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[9] | Hu Jiayuan, Chen Zhuoyu . On distribution properties of cubic residues. AIMS Mathematics, 2020, 5(6): 6051-6060. doi: 10.3934/math.2020388 |
[10] | Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183 |
For a positive integer q and an arbitrary integer h, the Dedekind sum S(h,q) is defined by
S(h,q)=q∑a=1((aq))((ahq)), |
where
((x))={x−[x]−12,if x not be an integer;0,if x be an integer. |
It plays an important role in the transformation theory of the Dedekind η function. The various properties of S(h,q) were investigated by many authors, related works can be founded in [2,3,4] and [9,10]. Berndt [1] studied the following Hardy sums:
H(h,q)=q−1∑j=1(−1)j+1+[hjq],s1(h,q)=q−1∑j=1(−1)[hjq]((jq)),s2(h,q)=q−1∑j=1(−1)j((jq))((hjq)),s3(h,q)=q−1∑j=1(−1)j((hjq)),s4(h,q)=q−1∑j=1(−1)[hjq],s5(h,q)=q−1∑j=1(−1)j+[hjq]((jq)). |
In [6], R. Sitaramachandra Rao expressed Hardy sums in terms of Dedekind sum S(h,q) as following:
H(h,q)=−8S(h+q,2q)+4S(h,q), if h+q is odd ;s1(h,q)=2S(h,q)−4S(h,2q), if h is even ;s2(h,q)=−S(h,q)+2S(2h,q), if q is even ;s3(h,q)=2S(h,q)−4S(2h,q), if q is odd ;s4(h,q)=−4S(h,q)+8S(h,2q), if h is odd ;s5(h,q)=−10S(h,q)+4S(2h,q)+4S(h,2q), if h+q is even . |
Each one of H(h,q) (h+q even), s1(h,q) (h odd), s2(h,q) (q odd), s3(h,q) (q even), s4(h,q) (h even), s5(h,q) (h+q odd) is zero. Z. Xu and W. Zhang [8] proved that if p is a prime and ˉb denotes the multiplicative inverse of b modp, then
∑a<p4∑b<p4H(2aˉb,p)=316p2+O(p1+ϵ). |
W. Liu [5] proved that if p≥5 is a prime and ˉb denotes the multiplicative inverse of b modp, then
∑a<p3∑b<p3H(2aˉb,p)=15p2+O(p1+ϵ), |
∑a<p3∑b<p4H(2aˉb,p)=27320p2+O(p1+ϵ). |
Let 1<N<p, is there a mean value distribution formula of the Hardy sum in the short interval [1,N]? In fact, it is very difficult to get a asymptotic formula for the mean value in the case of one variable as
∑a<NH(a,p). |
In this paper, we use the mean value of L-functions and estimate of character sums to study the mean value
∑a≤N∑b≤NalbkH(2a¯b,p), |
where l,k be two non-negative integers and ¯b denote the multiplicative inverse of b modulo p, and obtain the following main conclusion:
Theorem. Let p>2 be a prime and N a positive integer with 1<N<p, l and k be two non-negative integers. Then we have
∑a≤N∑b≤NalbkH(2a¯b,p)=C(l,k)7⋅2l−2ζ(3)(l+k+1)pNl+k+1+{O(pNl+klog2N+Nl+k+2po(1)),if l=k=0; l=0,k≥1 or l≥1,k=0;O(pNl+klogN+Nl+k+2po(1)),if l≥1,k≥1. |
here
C(l,k)=−7ζ(3)8−∞∑a=1∞∑b=a+1(a,2)=1,(b,2)=1al−1bl+2−∞∑b=12b∑a=b+1(a,2)=1,(b,2)=1al−1bl+2−2l+k+1∞∑b=1∞∑a=2b+1(a,2)=1,(b,2)=1bk−1ak+2 |
is a constant depending on l and k.
It is clear that the asymptotic formulas in the Theorem are non-trivial in the range pϵ<N<p1−ϵ.
From the theorem we may immediately deduce the following corollaries:
Corollary 1. Let p>2 be a prime and N an integer with 1<N<p. Then we have
∑a≤N∑b≤NaH(2a¯b,p)=C(1,0)7ζ(3)pN2+O(pNlog2N+N3po(1)), |
where
C(1,0)=716ζ(3)−π224−∞∑a=1∞∑b=11(a+2b)3−92∞∑a=1∞∑b=11(a+2b)2b+2∞∑a=1∞∑b=11(a+4b)2b |
is a constant.
Corollary 2. Let p>2 be a prime and N an integer with 1<N<p. Then we have
∑a≤N∑b≤NabH(2a¯b,p)=2C(1,1)21ζ(3)pN3+O(pN2logN+N4po(1)), |
where
C(1,1)=π28−2516ζ(3)−10∞∑a=1∞∑b=11(a+2b)3+8∞∑a=1∞∑b=11(a+4b)3 |
is a constant.
To complete the proof of the theorem, we need several lemmas.
Lemma 1. Let q≥3 and h be two integers with (h,q)=1. Then we have
S(h,q)=1π2q∑d|qd2ϕ(d)∑χmoddχ(−1)=−1χ(h)|L(1,χ)|2, |
where ϕ(d) is the Euler function.
Proof. See Lemma 1 of reference [9].
Lemma 2. Let q>1 be an odd integer and h an integer with (h,q)=1. Then we have
H(h,q)={−16π2q∑d|qd2ϕ(d)∑χmoddχ(−1)=−1χ(h)|L(1,χχ02)|2,2∣h;0,2∤h. |
where χ02 be a principal Dirichlet character modulo 2.
Proof. From [1], we have
H(h,q)=−8S(h+q,2q)+4S(h,q)=−4π2q∑d|2qd2ϕ(d)∑χmoddχ(−1)=−1χ(h+q)|L(1,χ)|2+4π2q∑d|qd2ϕ(d)∑χmoddχ(−1)=−1χ(h)|L(1,χ)|2. |
Note that q be an odd integer, we can get
∑d|2qf(d)=∑d|qf(d)+∑d|qf(2d) |
Hence we can write
H(h,q)=−4π2q(∑d|qd2ϕ(d)∑χmoddχ(−1)=−1χ(h+q)|L(1,χ)|2+∑d|q(2d)2ϕ(2d)∑χmod2dχ(−1)=−1χ(h+q)|L(1,χ)|2)+4π2q∑d|qd2ϕ(d)∑χmoddχ(−1)=−1χ(h)|L(1,χ)|2.=−16π2q∑d|qd2ϕ(d)∑χmoddχ(−1)=−1χ(h+q)χ02(h+q)|L(1,χχ02)|2={−16π2q∑d|qd2ϕ(d)∑χmoddχ(−1)=−1χ(h)|L(1,χχ02)|2,2∣h;0,2∤h. |
This proves Lemma 2.
Lemma 3. Let p>2 be a prime, a be a positive integer with (a,p)=1. Then we have the asymptotic formula
∑χmodpχ(−1)=−1χ(2aˉb)|L(1,χχ02)|2=∑χmodpχ(−1)=−1χ(2aˉb)|∑1≤u≤p2χχ02(u)u|2+O(log2p√p). |
Proof. For convenience, we let
A(χ,y)=∑p2<u≤yχ(u). |
Then applying Abel's identity we have
L(1,χχ02)=∑1≤u≤p2χχ02(u)u+∫∞p2A(χχ02,y)y2dy. |
Hence
∑χmodpχ(−1)=−1χ(2aˉb)|L(1,χχ02)|2=∑χmodpχ(−1)=−1χ(2aˉb)|∑1≤u≤p2χχ02(u)u+∫∞p2A(χχ02,y)y2dy|2=∑χmodpχ(−1)=−1χ(2aˉb)|∑1≤u≤p2χχ02(u)u|2+∑χmodpχ(−1)=−1χ(2aˉb)(∑1≤u≤p2χχ02(u)u)(∫∞p2A(¯χχ02,y)y2dy)+∑χmodpχ(−1)=−1χ(2aˉb)(∑1≤u≤p2¯χχ02(u)u)(∫∞p2A(χχ02,y)y2dy)+∑χmodpχ(−1)=−1χ(2aˉb)|∫∞p2A(χχ02,y)y2dy|2. |
Using the Cauchy inequality and the estimate |∑m≤n≤Mχ(n)|≪√plogp, we have the estimates
|∑χmodpχ(−1)=−1χ(2aˉb)(∑1≤u≤p2χχ02(u)u)(∫∞p2A(¯χχ02,y)y2dy)|≪[∑χmodpχ(−1)=−1|∑1≤u≤p2χχ02(u)u|2]12[∑χmodpχ(−1)=−1|∫∞p2A(¯χχ02,y)y2dy|2]12≪logp√p, |
|∑χmodpχ(−1)=−1χ(2aˉb)(∑1≤u≤p2¯χχ02(u)u)(∫∞p2A(χχ02,y)y2dy)|≪logp√p, |
and
|∑χmodpχ(−1)=−1χ(2aˉb)|∫∞p2A(χχ02,y)y2dy|2|≪log2pp2. |
So we may immediately get the asymptotic formula
∑χmodpχ(−1)=−1χ(2aˉb)|L(1,χχ02)|2=∑χmodpχ(−1)=−1χ(2aˉb)|∑1≤u≤p2χχ02(u)u|2+O(log2p√p). |
This proves Lemma 3.
Lemma 4. Let p>2 be a prime and N an integer with 1<N<p. Then
∑a≤N∑b≤N∑χmodpχ(−2a¯b)|∑1≤u≤p2χχ02(u)u|2=O(N2po(1)). |
Proof. From the orthogonality relation for character sums modulo p we have
∑a≤N∑b≤N∑χmodpχ(−2a¯b)|∑1≤u≤p2χχ02(u)u|2=∑a≤N∑b≤N∑χmodpχ(−2a¯b)∑1≤u≤p2χχ02(u)u∑1≤v≤p2¯χχ02(v)v=ϕ(p)∑a≤N∑b≤N∑1≤u≤p2∑1≤v≤p2−2au≡bv(modp),(u,2p)=1,(v,2p)=11uv, |
Let J=⌊2logp⌋. By using the similar method used in [7] we can write
ϕ(p)∑a≤N∑b≤N∑1≤u≤p2∑1≤v≤p2−2au≡bv(modp),(u,2p)=1,(v,2p)=11uv≤ϕ(p)J∑i,j=0∑ei≤u<ei+11u∑ej≤v<ej+11vN∑a,b=1−2au≡bv(modp)1≤2ϕ(p)∑0≤i≤j≤J∑ei≤u<ei+11u∑ej≤v<ej+11vN∑a,b=1−2au≡bv(modp)1≤2ϕ(p)∑0≤i≤j≤Je−(i+j)∑ei≤u<ei+1∑ej≤v<ej+1N∑a,b=1−2au≡bv(modp)1 |
Thus,
∑a≤N∑b≤N∑χmodpχ(−2a¯b)|∑1≤u≤p2χχ02(u)u|2≤2ϕ(p)∑0≤i≤j≤Je−(i+j)Ki,j, |
where Ki,j is the number of solutions (a,b,u,v) to the congruence −2au≡bv(modp) with 1≤a,b≤N,ei≤u<ei+1 and ej≤v<ej+1.
For a solution (a,b,u,v), write bv=|k|p−2au. We have
p≤|k|p≤max{2au+bv}≤N(2ei+1+ej+1)≤3ej+1N. |
So the product bv can take at most
3ej+1Np⋅ei+1⋅N=3ei+j+2N2p |
values. It is clear that if a,u,k are fixed, then b and v can take at most po(1) possible values. Hence,
Ki,j≤3ei+j+2N2p⋅po(1). |
Noting that
∑0≤i≤j≤Je−(i+j)=O(1). |
So we have
∑a≤N∑b≤N∑χmodpχ(−2a¯b)|∑1≤u≤p2χχ02(u)u|2=O(N2po(1)). |
This proves Lemma 4.
In this section we complete the proof of the Theorem.
From Lemma 2 and Lemma 3 we have
∑a≤N∑b≤NalbkH(2a¯b,p)=−16pπ2ϕ(p)∑a≤N∑b≤Nalbk∑χmodpχ(−1)=−1χ(2a¯b)|L(1,χχ02)|2=−16pπ2ϕ(p)∑a≤N∑b≤Nalbk(∑χmodpχ(−1)=−1χ(2aˉb)|∑1≤u≤p2χχ02(u)u|2+O(log2p√p))=−8pπ2ϕ(p)∑a≤N∑b≤Nalbk∑χmodp(1−χ(−1))χ(2a¯b)|∑1≤u≤p2χχ02(u)u|2+O(Nl+k+2√plog2pϕ(p))=−8pπ2ϕ(p)∑a≤N∑b≤Nalbk∑χmodpχ(2a¯b)|∑1≤u≤p2χχ02(u)u|2+O(Nl+k+2√plog2pϕ(p))+8pπ2ϕ(p)∑a≤N∑b≤Nalbk∑χmodpχ(−2a¯b)|∑1≤u≤p2χχ02(u)u|2:=M1+M2+O(Nl+k+2√plog2pϕ(p)) | (1) |
From the orthogonality relations for characters modulo p, we have
M1=−8pπ2ϕ(p)∑a≤N∑b≤Nalbk∑χmodpχ(2a¯b)|∑1≤u≤p2χχ02(u)u|2=−8pπ2∑a≤N∑b≤N∑′1≤u≤p2∑′1≤v≤p22au≡bv(modp),(u,2)=1,(v,2)=1albkuv=−8pπ2∑a≤N∑b≤N∑′1≤u≤p2∑′1≤v≤p22au=bv,(u,2)=1,(v,2)=1albkuv−8pπ2∑a≤N∑b≤N∑′1≤u≤p2∑′1≤v≤p22au≡bv,2au≠bv,(u,2)=1,(v,2)=1albkuv:=M11+M12 |
here ∑1≤u≤p2′ denotes the summation over u from 1 to p2 with (u,p)=1.
Now, we calculate M11. First, we write
M11=−8pπ2∑a≤N∑b≤N∑′1≤u≤p2∑′1≤v≤p22au=bv,(u,2)=1,(v,2)=1albkuv=−2k+3pπ2∑d≤N∑a≤Nd∑b≤N2d∑′1≤v≤min{p2a,p2b}(a,b)=1,(a,2)=1,(v,2)=1,(b,2)=1dl+kal−1bk−1v2=−2k+3pπ2∑a≤N∑b≤N∑d≤min{Na,N2b}∑′1≤v≤min{p2a,p2b}(a,b)=1,(a,2)=1,(v,2)=1,(b,2)=1dl+kal−1bk−1v2=−2k+3pπ2∑1≤a<N∑a<b≤N∑d≤N2b∑′1≤v≤p2b(a,b)=1,(a,2)=1,(v,2)=1,(b,2)=1dl+kal−1bk−1v2−2k+3pπ2∑1≤b<N2∑2b<a≤N∑d≤Na∑′1≤v≤p2a(a,b)=1,(a,2)=1,(v,2)=1,(b,2)=1dl+kal−1bk−1v2−2k+3pπ2∑1≤b≤N2∑b<a<2b∑d≤N2b∑′1≤v≤p2a(a,b)=1,(a,2)=1,(v,2)=1,(b,2)=1dl+kal−1bk−1v2−2k+3pπ2∑d≤N2∑′1≤v≤p2(v,2)=1dl+kv2. |
Note that
∑1≤v≤p2(v,2)=1′v−2=π28+O(p−2) |
and l+k≥0, we can get
−2k+3pπ2∑d≤N2∑1≤v≤p2(v,2)=1′dl+kv2=−pNl+k+12l+1(l+k+1)+O(pNl+k). |
So, we can write
M11:=A+B+C−pNl+k+12l+1(l+k+1)+O(pNl+k). | (2) |
We shall calculate the first three terms in the expression (2). First we calculate A. Write
A=−2k+3pπ2∑1≤a<N∑a<b≤N∑d≤N2b∑′1≤v≤p2b(a,b)=1,(a,2)=1,(v,2)=1,(b,2)=1dl+kal−1bk−1v2=−pNl+k+12l+1(l+k+1)∑1≤a<N∑a<b≤N(a,b)=1,(a,2)=1,(b,2)=1al−1b−l−2+O(pNl+k∑1≤a<N∑a<b≤Nal−1b−l−1), |
note that
∑1≤a<N∑a<b≤N(a,b)=1,(a,2)=1,(b,2)=1al−1b−l−2=∑1≤a<N∑a<b≤N(a,2)=1,(b,2)=1al−1b−l−2∑d|(a,b)μ(d)=∑1≤a<N∑a<b≤N(a,2)=1,(b,2)=1al−1b−l−2∑d≤Nb(d,2)=1μ(d)d3, |
we have
A=−pNl+k+12l+1(l+k+1)∑1≤a<N∑a<b≤N(a,2)=1,(b,2)=1al−1b−l−2(∞∑d=1(d,2)=1μ(d)d3−∑d>Nb(d,2)=1μ(d)d3)+O(pNl+k∑1≤a<N∑a<b≤Nal−1b−l−1). |
By using the identity
∞∑d=1(d,2)=1μ(d)ds=2s(2s−1)ζ(s), |
we have
A=−pNl+k+17⋅2l−2ζ(3)(l+k+1)∑1≤a<N∑a<b≤N(a,2)=1,(b,2)=1al−1b−l−2+O(pNl+k∑1≤a<N∑a<b≤Nal−1b−l−1). | (3) |
For the case l=0, we have
A=−4pNk+17ζ(3)(k+1)∑1≤a<N∑a<b≤N(a,2)=1,(b,2)=11ab2+O(pNk∑1≤a<N∑a<b≤N1ab)=−4pNk+17ζ(3)(k+1)(∞∑a=1∞∑b=a+1(a,2)=1,(b,2)=11ab2−∑a<N∑b>N(a,2)=1,(b,2)=11ab2−∑a>N∑b>a(a,2)=1,(b,2)=11ab2)+O(pNklog2N)=−4pNk+17ζ(3)(k+1)∞∑a=1∞∑b=a+1(a,2)=1,(b,2)=11ab2+O(pNklog2N). | (4) |
For the case l≥1, we have
A=−pNl+k+17⋅2l−2ζ(3)(l+k+1)∑1≤a<N∑a<b≤N(a,2)=1,(b,2)=1al−1b−l−2+O(pNl+k∑1≤a<N∑a<b≤Nal−1b−l−1)=−pNl+k+17⋅2l−2ζ(3)(l+k+1)(∞∑a=1∞∑b=a+1(a,2)=1,(b,2)=1al−1bl+2−∑a<N∑b>N(a,2)=1,(b,2)=1al−1bl+2−∑a>N∑b>a(a,2)=1,(b,2)=1al−1bl+2)+O(pNl+k∑1≤a<N∑a<b≤Nal−1b−l−1)=−pNl+k+17⋅2l−2ζ(3)(l+k+1)∞∑a=1∞∑b=a+1(a,2)=1,(b,2)=1al−1bl+2+O(pNl+klogN). | (5) |
By using the same method, we can calculate B:
B=−2k+3pπ2∑1≤b<N2∑2b<a≤N∑d≤Na∑′1≤v≤p2a(a,b)=1,(a,2)=1,(v,2)=1,(b,2)=1dl+kal−1bk−1v2=−2k+3pNl+k+17ζ(3)(l+k+1)∑1≤b<N2∑2b<a≤N(a,2)=1,(b,2)=1a−k−2bk−1+O(pNl+k∑1≤b<N2∑2b<a≤Na−k−1bk−1). |
For the case k=0, we can also get
B=−23pNl+17ζ(3)(l+1)∞∑b=1∞∑a=2b+1(a,2)=1,(b,2)=11a2b+O(pNllog2N). | (6) |
For the case k≥1, we can also get
B=−2k+3pNl+k+17ζ(3)(l+k+1)∞∑b=1∞∑a=2b+1(a,2)=1,(b,2)=1bk−1ak+2+O(pNl+klogN). | (7) |
By using the same method, we can also calculate C:
C=−2k+3pπ2∑1≤b≤N2∑b<a<2b∑d≤N2b∑′1≤v≤p2a(a,b)=1,(a,2)=1,(v,2)=1,(b,2)=1dl+kal−1bk−1v2=−pNl+k+17⋅2l−2ζ(3)(l+k+1)∑1≤b≤N2∑b<a<2b(a,2)=1,(b,2)=1al−1bl+2+O(pNl+k∑1≤b≤N2∑b<a<2bal−1bl+1). |
For the case l=0, we can also get
C=−4pNk+17ζ(3)(k+1)∞∑b=12b∑a=b+1(a,2)=1,(b,2)=11ab2+O(pNklog2N). | (8) |
For the case l≥1, we can also get
C=−pNl+k+17⋅2l−2ζ(3)(l+k+1)∞∑b=12b∑a=b+1(a,2)=1,(b,2)=1al−1bl+2+O(pNl+klogN). | (9) |
Then from (2)–(9), we can get
M11=C(l,k)pNl+k+17⋅2l−2ζ(3)(l+k+1)+{O(pNl+klog2N),if l=k=0; l=0,k≥1 or l≥1,k=0;O(pNl+klogN),if l≥1,k≥1. | (10) |
here
C(l,k)=−7ζ(3)8−∞∑a=1∞∑b=a+1(a,2)=1,(b,2)=1al−1bl+2−∞∑b=12b∑a=b+1(a,2)=1,(b,2)=1al−1bl+2−2l+k+1∞∑b=1∞∑a=2b+1(a,2)=1,(b,2)=1bk−1ak+2 |
is a constant related to l,k.
Now, we calculate M12. Similarly to the proof of Lemma 4 we have
M12=−8pπ2∑a≤N∑b≤N∑′1≤u≤p2∑′1≤v≤p22au≡bv,2au≠bv,(u,2)=1,(v,2)=1albkuv≪pJ∑i,j=0∑ei≤u<ei+11u∑ej≤v<ej+11vN∑a,b=12au≡bv(modp)2au≠bvalbk≪pNl+k∑0≤i≤j≤Je−i−j∑ei≤u<ei+1∑ej≤v<ej+1N∑a,b=12au≡bv(modp)2au≠bv1≪Nl+k+2po(1). | (11) |
In addition, from Lemma 4 we have
M2=8pπ2ϕ(p)∑a≤N∑b≤Nalbk∑χmodpχ(−2a¯b)|∑1≤u≤p2χχ02(u)u|2≪Nl+k∑a≤N∑b≤N∑χmodpχ(−2a¯b)|∑1≤u≤p2χχ02(u)u|2≪Nl+k+2po(1). | (12) |
Then combining (1) and (10)–(12), we obtain the asymptotic formula
∑a≤N∑b≤NalbkH(2a¯b,p)=C(l,k)7⋅2l−2ζ(3)(l+k+1)pNl+k+1+{O(pNl+klog2N+Nl+k+2po(1)),if l=k=0; l=0,k≥1 or l≥1,k=0;O(pNl+klogN+Nl+k+2po(1)),if l≥1,k≥1. |
This completes the proof of the theorem.
Taking l=1,k=0 and l=k=1 in the Theorem, we may immediately get the corollaries.
The authors would like to thank the anonymous referee for very careful reading of the manuscript and helpful comments. This work is supported by the Basic Research Program for Nature Science of Shaanxi Province (2014JM1001, 2015KJXX-27) and N.S.F.(11971381, 11471258, 11701447) of P. R. China.
We declare that we have no conflict of interest.
[1] |
B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math., 1978 (1978), 332-365. doi: 10.1515/crll.1978.303-304.332
![]() |
[2] |
L. Carlitz, The reciprocity theorem of Dedekind sums, Pac. J. Math., 3 (1953), 513-522. doi: 10.2140/pjm.1953.3.513
![]() |
[3] | J. B. Conrey, E. Fransen, R. Klein, et al. Mean values of Dedekind sums, J. Number Theory, 41 (1996), 214-226. |
[4] |
C. Jia, On the mean values of Dedekind sums, J. Number Theory, 87 (2001), 173-188. doi: 10.1006/jnth.2000.2580
![]() |
[5] | W. Liu, Mean value of Hardy sums over short intervals, Acta Math. Acad. Paedagogicae Nyiregyhaziensis, 28 (2012), 1-11. |
[6] |
R. Sitaramachandra Rao, Dedekind and Hardy sums, Acta Arith., 48 (1987), 325-340. doi: 10.4064/aa-48-4-325-340
![]() |
[7] |
I. E. Shparlinski, on some weighted average value of L-functions, Bull. Aust. Math. Soc., 79 (2009), 183-186. doi: 10.1017/S0004972708001020
![]() |
[8] |
Z. Xu, W. Zhang, The mean value of Hardy sums over short intervals, P. Roy. Soc. Edinburgh, 137 (2007), 885-894. doi: 10.1017/S0308210505000648
![]() |
[9] |
W. Zhang, On the mean values of Dedekind sums, J. Theor. Nombr. Bordx., 8 (1996), 429-442. doi: 10.5802/jtnb.179
![]() |
[10] |
W. Zhang, A note on the mean square value of the Dedekind sums, Acta Math. Hung., 86 (2000), 275-289. doi: 10.1023/A:1006724724840
![]() |