
AIMS Mathematics, 2020, 5(5): 41974219. doi: 10.3934/math.2020268
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
A numerical study of the ferromagnetic flow of Carreau nanofluid over a wedge, plate and stagnation point with a magnetic dipole
1 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
2 Mechanical Engineering Department, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, AlKhobar 31952, Saudi Arabia
3 Department of Mathematics and Science Education, Faculty of Education, Harran University, Sanliurfa,Turkey
Received: , Accepted: , Published:
Special Issues: Recent Advances in Fractional Calculus with Real World Applications
References
1. R. Sivaraj, B. R. Kumar, Unsteady MHD dusty viscoelastic fluid Couette flow in an irregular channel with varying mass diffusion, Int. J. Heat Mass Tran., 55 (2012), 30763089.
2. B. R. Kumar, R. Sivaraj, Heat and mass transfer in MHD viscoelastic fluid flow over a vertical cone and flat plate with variable viscosity, Int. J. Heat Mass Tran., 56 (2013), 370379.
3. B. R. Kumar, R. Sivaraj, MHD viscoelastic fluid nonDarcy flow over a vertical cone and a flat plate, Int. Commun. Heat Mass Tran., 40 (2013), 16.
4. A. J. Benazir, R. Sivaraj, M. M. Rashidi, Comparison between Casson fluid flow in the presence of heat and mass transfer from a vertical cone and flat plate, J. Heat Trans., 138 (2016), 16.
5. Z. Li, A. Shafee, M. Ramzan, et al. Simulation of natural convection of Fe_{3}O_{4}water ferrofluid in a circular porous cavity in the presence of a magnetic field, Eur. Phys. J. Plus, 134 (2019), 77.
6. P. Besthapu, R. Ul Haq, S. Bandari, et al. Thermal radiation and slip effects on MHD stagnation point flow of nonNewtonian nanofluid over a convective stretching surface, Neural Comput. Appl., 31 (2019), 207217.
7. F. A. Soomro, R. Ul Haq, Q. M. AlMdallal, et al. Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface, Results Phys., 8 (2018), 404414.
8. K. Ur Rehman, I. Shahzadi, M. Y. Malik, et al. On heat transfer in the presence of nanosized particles suspended in a magnetized rotatory flow field, Case Stud. Therm. Eng., 14 (2019), 110.
9. P. Ragupathi, A. K. A. Hakeem, Q. M. AlMdallal, et al. Nonuniform heat source/sink effects on the threedimensional flow of Fe_{3}O_{4}/Al_{2}O_{3} nanoparticles with different base fluids past a Riga plate, Case Stud. Therm. Eng., 15 (2019), 19.
10. S. Saranya, P. Ragupathi, B.Ganga, et al. Nonlinear radiation effects on magnetic/nonmagnetic nanoparticles with different base fluids over a flat plate, Adv. Powder Technol., 29 (2018), 19771990.
11. S. Aman, Q. AlMdallal, Flow of ferrofluids under second order slip effect, AIP Conference Proceedings, 2116 (2019), 030012.
12. S. S. Papell, Low viscosity magnetic fluid obtained by colloidal suspension of magnetic particles, U. S. Patent, 215 (1965), 572.
13. K. Raj, R. Moskowitz, Commercial applications of ferrofluids, J. Magn. Magn. Mater., 85 (1990), 233245.
14. D. B. Hathaway, Use of ferrofluid in moving coil loudspeakers, dBsound Eng. Mag., 13 (1979), 4244.
15. M. I. I. Shliomis, Comment on "Ferrofluids as Thermal Ratchets", Phys. Rev. Lett., 92 (2004) 188902.
16. J. C. Misra, G. C. Shit, Flow of a biomagnetic viscoelastic fluid in a channel with stretching walls, J. Appl. Mech., 76 (2015), 19.
17. A. Majeed, A. Zeeshan, R. Ellahi, Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux, J. Mol. Liq., 223 (2016), 528533.
18. N. Muhammad, S. Nadeem, Ferrite nanoparticles NiZnFe_{2}O_{4}, MnZnFe_{2}O_{4} and Fe_{2}O_{4} in the flow of ferromagnetic nanofluid, Eur. Phys. J. Plus, 132 (2017), 377.
19. P. J. Carreau, An analysis of the viscous behavior of polymer solutions, Can. J. Chem. Eng., 57 (1979), 135140.
20. S. I. Abdelsalam, M. M. Bhatti, New insight into AuNP applications in tumour treatment and cosmetics through wavy annuli at the nanoscale, Sci. Rep., 9 (2019), 114.
21. Y. Yang, Y. Zhang, E. Omairey, et al. Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as biobitumen, J. Clean. Prod., 187 (2018), 390399.
22. K. L. Hsiao, To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using CarreauNanofluid with parameters control method, Energy, 130 (2017), 486499.
23. M. Khan, M. Azam, A. Munir, On unsteady FalknerSkan flow of MHD Carreau nanofluid past a static/moving wedge with convective surface condition, J. Mol. Liq., 230 (2017), 4858.
24. M. Waqas, M. I. Khan, T. Hayat, et al. Numerical simulation for magneto Carreau nanofluid model with thermal radiation: A revised model, Comput. Method. Appl. Mech. Eng., 324 (2017), 640653.
25. M. Khan, M. Irfan, W. A. Khan, Numerical assessment of solar energy aspects on 3D magnetoCarreau nanofluid: A revised proposed relation, Int. J. Hydrogen Energ., 42 (2017), 2205422065.
26. S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, In: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, California, 1995, 99105.
27. J. Buongiorno, Convective transport in nanofluids, J. Heat Trans., 128 (2006), 240.
28. M. I. Khan, S. Qayyum, T. Hayat, et al. Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection, Phys. Lett. A, 382 (2018), 20172026.
29. S. S. Ghadikolaei, K. Hosseinzadeh, D. D. Ganji, Investigation on Magneto EyringPowell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect, World J. Eng., 16 (2019), 5163.
30. Y. Lin, Y. Jiang, Effects of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: A numerical simulation, Int. J. Heat Mass Tran., 123 (2018), 569582.
31. V. M. Falkner, S. W. Skan, Some approximate solutions of the boundarylayer equations, Philos. Mag., 12 (1931), 865896.
32. H. T. Lin, L. K. Lin, Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number, Int. J. Heat Mass Tran., 30 (1987), 11111118.
33. S. Nadeem, S. Ahmad, N. Muhammad, Computational study of FalknerSkan problem for a static and moving wedge, Sensor. Actuat. B Chem., 263 (2018), 6976.
34. F. A. Hendi, M. Hussain, Analytic solution for MHD FalknerSkan flow over a porous surface, J. Appl. Math., 2012 (2012), 19.
35. M. S. Alam, M. A. Khatun, M. M. Rahman, et al. Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers, Int. J. Mech. Sci., 105 (2016), 191205
36. M. Khan, M. Azam, A. S. Alshomrani, Unsteady slip flow of Carreau nanofluid over a wedge with nonlinear radiation and new mass flux condition, Results Phys., 7 (2017), 22612270.
37. H. Sardar, L. Ahmad, M. Khan, et al. Investigation of mixed convection flow of Carreau nanofluid over a wedge in the presence of Soret and Dufour effects, Int. J. Heat Mass Tran., 137 (2019), 809822.
38. H. T. Basha, R. Sivaraj, A. S. Reddy, et al. Impacts of temperaturedependent viscosity and variable Prandtl number on forced convective FalknerSkan flow of Williamson nanofluid, SN Appl. Sci., 2 (2020), 114.
39. H. T. Basha, R. Sivaraj, A. S. Reddy, et al. SWCNH/diamondethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiationsolar energy application, Eur. Phys. J. Spec. Top., 228 (2019), 25312551
40. W. Gao, M. Partohaghighi, H. Mehmet, et al. Regarding the group preserving scheme and method of line to the numerical simulations of KleinGordon model, Results Phys., 15 (2019), 17.
41. W. Gao, H. F. Ismael, S. A. Mohammed, et al. Complex and real optical soliton properties of the paraxial nonlinear Schrödinger equation in Kerr media with Mfractional, Front. Phys., 7 (2019), 18.
42. W. Gao, H. F. Ismael, H. Bulut, et al. Instability modulation for the (2+1)dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr., 2019.
43. W. Gao, B. Ghanbari, H. Günerhan, et al. Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrödinger equation, Mod. Phys. Lett. B, 34 (2020), 2050034.
44. A. Ciancio, Analysis of time series with wavelets, Int. J. Wavelets, Multi., 5 (2007), 241256.
45. A. Ciancio, A. Quartarone, A hybrid model for tumorimmune competition, U. P. B. Sci. Bull. Ser. A, 75 (2013), 125136.
46. A. Cordero, J. P. Jaiswal, J. R. Torregrosa, Stability analysis of fourthorder iterative method for finding multiple roots of nonlinear equations, Appl. Math. Nonlinear Sci., 4 (2019), 4356.
47. P. K. Pandey, A new computational algorithm for the solution of second order initial value problems in ordinary differential equations, Appl. Math. Nonlinear Sci., 3 (2018), 167174.
48. H. Chen, J. Jiang, D. Cao, et al. Numerical investigation on global dynamics for nonlinear stochastic heat conduction via global random attractors theory, Appl. Math. Nonlinear Sci., 3 (2018), 175186.
49. L. F. Shampine, I. Gladwell, S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, Cambridge, 2003.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)