AIMS Mathematics, 2020, 5(5): 4168-4196. doi: 10.3934/math.2020267.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Some results on p-adic valuations of Stirling numbers of the second kind

1 Mathematical College, Sichuan University, Chengdu 610064, P.R. China
2 School of Science, Xihua University, Chengdu 610039, P.R. China

Let $n$ and $k$ be nonnegative integers. The Stirling number of the second kind, denoted by $S(n, k)$, is defined as the number of ways to partition a set of $n$ elements into exactly $k$ nonempty subsets and we have $$ S(n, k)=\frac{1}{k!}\sum_{i=0}^{k}(-1)^i\binom{k}{i}(k-i)^n. $$ Let $p$ be a prime and $v_p(n)$ stand for the $p$-adic valuation of $n$, i.e., $v_p(n)$ is the biggest nonnegative integer $r$ with $p^r$ dividing $n$. Divisibility properties of Stirling numbers of the second kind have been studied from a number of different perspectives. In this paper, we present a formula to calculate the exact value of $p$-adic valuation of $S(n, n-k)$, where $n\ge k+1$ and $1\le k\le 7$. From this, for any odd prime $p$, we prove that $v_p((n-k)!S(n, n-k))< n$ if $n\ge k+1$ and $0\le k\le 7$. It confirms partially Clarke's conjecture proposed in 1995. We also give some results on $v_p(S(ap^n, ap^n-k))$, where $a$ and $n$ are positive integers with $(a, p)=1$ and $1\le k\le 7$.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Stirling number of the second kind; p-adic valuation; Stirling-like numbers; r-associated Stirling number of the second kind

Citation: Yulu Feng, Min Qiu. Some results on p-adic valuations of Stirling numbers of the second kind. AIMS Mathematics, 2020, 5(5): 4168-4196. doi: 10.3934/math.2020267

References

  • 1. L. Carlitz, Congruences for generalized Bell and Stirling numbers, Duke Math. J., 22 (1955), 193-205.    
  • 2. Y. H. Kwong, Minimum periods of S (n, k) modulo M, Fibonacci Quart., 27 (1989), 217-221.
  • 3. O. Y. Chan, D. Manna, Congruences for Stirling numbers of the second kind, Contemp. Math., 517 (2010), 97-111.    
  • 4. F. Clarke, Hensel's lemma and the divisibility by primes of Stirling-like numbers, J. Number Theory, 52 (1995), 69-84.    
  • 5. D. M. Davis, Divisibility by 2 of Stirling-like numbers, Proc. Amer. Math. Soc., 110 (1990), 597-600.
  • 6. S. F. Hong, J. R. Zhao, W. Zhao, The 2-adic valuations of Stirling numbers of the second kind, Int. J. Number Theory, 8 (2012), 1057-1066.    
  • 7. J. R. Zhao, S. F. Hong, W. Zhao, Divisibility by 2 of Stirling numbers of the second kind and their differences, J. Number Theory, 140 (2014), 324-348.    
  • 8. W. Zhao, J. R. Zhao, S. F. Hong, The 2-adic valuations of differences of Stirling numbers of the second kind, J. Number Theory, 153 (2015), 309-320.    
  • 9. T. Amdeberhan, D. Manna, V. Moll, The 2-adic valuation of Stirling numbers, Experiment. Math., 17 (2008), 69-82.    
  • 10. T. Lengyel, On the 2-adic order of Stirling numbers of the second kind and their differences, DMTCS Proc. AK, (2009), 561-572.
  • 11. S. F. Hong, On the p-adic behaviors of Stirling numbers of the first and second kinds, RIMS Kokyuroku Bessatsu, to appear.
  • 12. S. F. Hong, M. Qiu, On the p-adic properties of Stirling numbers of the first kind, Acta Math. Hungar., in press.
  • 13. T. Komatsu, P. Young, Exact p-adic valuations of Stirling numbers of the first kind, J. Number Theory, 177 (2017), 20-27.    
  • 14. T. Lengyel, On the divisibility by 2 of Stirling numbers of the second kind, Fibonacci Quart., 32 (1994), 194-201.
  • 15. M. Qiu, S. F. Hong, 2-Adic valuations of Stirling numbers of the first kind, Int. J. Number Theory, 15 (2019), 1827-1855.    
  • 16. S. D. Wannermacker, On 2-adic orders of Stirling numbers of the second kind, Integers, 5 (2005), A21, 7.
  • 17. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974.
  • 18. N. Koblitz, p-Adic Numbers, p-Adic Analysis and Zeta-Functions, 2Eds., GTM 58, SpringerVerlag, New York, 1984.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved