Citation: Weiguo Liu, Yan Jiang, Zhi Li. Rate of convergence of Euler approximation of time-dependent mixed SDEs driven by Brownian motions and fractional Brownian motions[J]. AIMS Mathematics, 2020, 5(3): 2163-2195. doi: 10.3934/math.2020144
[1] | Abigail Wiafe, Pasi Fränti . Affective algorithmic composition of music: A systematic review. Applied Computing and Intelligence, 2023, 3(1): 27-43. doi: 10.3934/aci.2023003 |
[2] | Abrhalei Tela, Abraham Woubie, Ville Hautamäki . Transferring monolingual model to low-resource language: the case of Tigrinya. Applied Computing and Intelligence, 2024, 4(2): 184-194. doi: 10.3934/aci.2024011 |
[3] | Pasi Fränti, Sami Sieranoja . Clustering accuracy. Applied Computing and Intelligence, 2024, 4(1): 24-44. doi: 10.3934/aci.2024003 |
[4] | Tinja Pitkämäki, Tapio Pahikkala, Ileana Montoya Perez, Parisa Movahedi, Valtteri Nieminen, Tom Southerington, Juho Vaiste, Mojtaba Jafaritadi, Muhammad Irfan Khan, Elina Kontio, Pertti Ranttila, Juha Pajula, Harri Pölönen, Aysen Degerli, Johan Plomp, Antti Airola . Finnish perspective on using synthetic health data to protect privacy: the PRIVASA project. Applied Computing and Intelligence, 2024, 4(2): 138-163. doi: 10.3934/aci.2024009 |
[5] | Francis Nweke, Abm Adnan Azmee, Md Abdullah Al Hafiz Khan, Yong Pei, Dominic Thomas, Monica Nandan . A transformer-driven framework for multi-label behavioral health classification in police narratives. Applied Computing and Intelligence, 2024, 4(2): 234-252. doi: 10.3934/aci.2024014 |
[6] | Hong Cao, Rong Ma, Yanlong Zhai, Jun Shen . LLM-Collab: a framework for enhancing task planning via chain-of-thought and multi-agent collaboration. Applied Computing and Intelligence, 2024, 4(2): 328-348. doi: 10.3934/aci.2024019 |
[7] | Elizaveta Zimina, Kalervo Järvelin, Jaakko Peltonen, Aarne Ranta, Kostas Stefanidis, Jyrki Nummenmaa . Linguistic summarisation of multiple entities in RDF graphs. Applied Computing and Intelligence, 2024, 4(1): 1-18. doi: 10.3934/aci.2024001 |
[8] | Yang Wang, Hassan A. Karimi . Exploring large language models for climate forecasting. Applied Computing and Intelligence, 2025, 5(1): 1-13. doi: 10.3934/aci.2025001 |
[9] | Marko Niemelä, Mikaela von Bonsdorff, Sami Äyrämö, Tommi Kärkkäinen . Classification of dementia from spoken speech using feature selection and the bag of acoustic words model. Applied Computing and Intelligence, 2024, 4(1): 45-65. doi: 10.3934/aci.2024004 |
[10] | Libero Nigro, Franco Cicirelli . Property assessment of Peterson's mutual exclusion algorithms. Applied Computing and Intelligence, 2024, 4(1): 66-92. doi: 10.3934/aci.2024005 |
The study of integral inequality is an interesting area for research in mathematical analysis [1,2]. The fundamental integral inequalities can be instrumental in cultivating the subjective properties of convexity. The existence of massive literature surrounding integral inequalities for convex functions [3-7] depicts the importance of this topic. The most beautiful fact about convex function is that, it has a very elegant representation based on an inequality presented when the functional value of a linear combination of two points in its domain does not exceed the linear combination of the functional values at those two points. Fractional calculus owes its starting point to whether or not the importance of a derivative to an integer order could be generalized to a fractional order which is not an integer. Following this unique conversation between L'Hopital and Leibniz, the concept of fractional calculus grabbed the eye of some extraordinary researchers like Euler, Laplace, Fourier, Lacroix, Abel, Riemann, and Liouville. Over time, fractional operators have been differentiated with their singularity, locality and having general forms with the improvements made in their kernel structures. In this sense, based on the basic concepts of fractional analysis, Riemann-Liouville(R-L) and Caputo operators, various new trends have been successful. Fractional integral inequalities are marvelous tools for building up the qualitative and quantitative properties of preinvex functions. There has been a ceaseless development of intrigue in such a region of research so as to address the issues of different utilizations of these variants. In 1938, Ostrowski inequality established the following useful and interesting integral inequality, (see [12] and [13]). This review assumed a vital part in growing and getting varieties of well-known integral inequalities with the assistance of fractional integral operators. Then again, by characterizing various forms of Riemann-Liouville(R-L) fractional operator somewhat recently, new forms and refinements of integral inequalities involving differentiable functions have been presented. Studies in the field of fractional calculus have carried another point of view and direction in different fields of applied sciences. It has revealed insight into numerous real-life issues with the utilizations of recently characterized fractional operators.
For recent result and their related some generalizations, variants and extensions concerning Ostrowski inequality (see [9,10,14-17]).
The aim of this paper is to establish some integral inequalities for functions whose derivatives in absolute value are preinvex. Now we recall some notions in invexity analysis which will be used through the paper (see [20,21,24,26,28]) and references therein.
Let g:K→ℜ and η:K×K→ℜ, where K is a nonempty set in ℜn, be continuous functions.
Definition [19] A function g:K⊆ℜ=(−∞,∞)→ℜ is said to be convex, if we have
g(vc+(1−v)e)≤vg(c)+(1−v)g(e). |
for all c,e∈K and v∈[0,1].
Definition [25] The set K⊂ℜn is said to be invex with respect to η(.,.), if for every c,e∈K and v∈[0,1]
c+vη(e,c)∈K. |
The above set K is also called η-connected set.
It is obvious that every convex set is invex with respect to η(e,c)=e−c but there exist invex sets which are not convex [20].
Definition The function g on the invex set K is said to be preinvex with respect to η if
g(c+vη(e,c)) ≤ (1−v) g(c) + v g(e) , ∀c , e∈K , v∈[0,1]. |
The function −g is said to be preconcave if and only if g is preinvex .
The important note that every convex function is a preinvex function but the converse is not true [21]. For example g(v)=−|v|, ∀ v∈ℜ, is not convex function but it is preinvex function with respect to
η(e,c)={e−c if ce≥0,c−e if ce<0. |
We also want the following hypothesis regarding the function η which is due to Mohan et al. [22]. Condition-C: Let K⊂ℜn be an open invex subset with respect to η:K×K→ℜ. For any c,e∈K and v∈[0,1]
η(e,e+v η(c,e))= −vη(c,e),η(c,e+v η(c,e))= (1−v)η(c,e). | (1.1) |
For any c,e∈K and v1,v2∈[0,1] from condition C, we have
η(e+v2 η(c,e) , e+v1 η(c,e))= (v2−v1)η(c,e). |
If g is a preinvex function on [c,c+η(e,c)] and the mapping η satisfies condition C, then for every v∈[0,1], from Eq (1.1), it yields that
|g(c+vη(e,c))|= |g(c+η(e,c))+(1−v)η(c,c+η(e,c))| ≤ v |g(c+η(e,c))|+(1−v)|g(c)|, |
and
|g(c+(1−v)η(e,c))|= |g(c+η(e,c))+vη(c,c+η(e,c))| ≤ (1−v) |g(c+η(e,c))|+v|g(c)|. |
There are many vector functions that satisfy the condition C in [25], which trivial case η(c,e)=c−e. For example suppose K=ℜ∖{0} and
η(e,c)={e−c if c>0,e>0e−c if c<0,e<0−e, otherwise |
The set K is invex set and η satisfies the condition C.
Noor et al. [23], proved the following Hermite-Hadamard type inequalities.
Theorem 1.1. Let g:K=[c,c+η(e,c)]→(0,∞) be a preinvex function on the interval of real numbers K0 with η(e,c)>0, then the following inequalities hold:
g(2c+η(e,c)2)≤1η(e,c)∫c+η(e,c)cg(x) dx≤g(c) + g(e)2. |
Then Riemann-Liouville(R-L) fractional integrals of order ε>0 with c≥0 are defined as follows:
Jεc+g(z)= 1Γ(ε)∫zc(z−v)ε−1 g(v) dv , z>c, |
and
Jεe−g(z)= 1Γ(ε)∫ez(v−z)ε−1 g(v) dv , z<e. |
In [30], Sarikaya et al. also described the inequality in fractional integral version. In this study, considering the above mentioned theoretical framework, firstly, an integral identity which is candidate to produce Ostrowski type inequalities has been proved. With the help of such identity like Hölder, Power mean, Young's inequalities, Hölder-İşcan, Improved power means inequality and convexity, a new type of inequality, Ostrowski type inequalities, has been obtained.
In this section, we give Ostrowski inequalities for Riemann-Liouville(R-L) fractional integrals operator are obtained for a differentiable functions on (c,c+η(e,c)). For this purpose, we give a new identity that involve Riemann-Liouville(R-L) fractional integrals operator whose second derivatives are preinvex functions.
Lemma 2.1. Suppose that a mapping g:[c,c+η(e,c)]→ℜ istwice differentiable with c<c+η(e,c). If g′′∈L1[c,c+η(e,c)], then for all z∈[c,c+η(e,c)] and ε>0, the following equality
ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}=ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1g′′(c+vη(z,c))dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1g′′(e+vη(z,e))dv, | (2.1) |
satisfies for v∈[0,1] .
Proof. Let us assume that
ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1g′′(c+vη(z,c))dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1g′′(e+vη(z,e))dv,I=ηε+2(z,c)(ε+1)η(e,c) I1+ηε+2(e,z)(ε+1)η(e,c) I2, | (2.2) |
where
I1=∫10vε+1g′′(c+vη(z,c))dv =vε+1g′(c+vη(z,c))η(z,c)g|10−∫10(ε+1)vε g′(c+vη(z,c))η(z,c)dv=g′(z)η(z,c)−ε+1η(z,c)∫10vε g′(c+vη(z,c))dv=g′(z)η(z,c)−ε+1η2(z,c)g(z)+ε(ε+1)η2(z,c)∫10vε−1 g(c+vη(z,c))dv=g′(z)η(z,c)−ε+1η2(z,c)g(z) +Γ(ε+2)ηε+2(z,c) Jε[c+η(z,c)]−g(c), |
and similarly
I2= ∫10vε+1g′′(e+vη(z,e))dv=vε+1g′(e+vη(z,e))η(z,e)g|10−∫10(ε+1)vε g′(e+vη(z,e))η(z,e)dv=g′(z)η(z,e)−ε+1η(z,c)∫10vε g′(c+vη(z,c))dv=−g′(z)η(e,z)−ε+1η2(z,e)g(z)+ε(ε+1)η2(z,e)∫10vε−1 g(e+vη(z,e))dv=−g′(z)η(e,z)−ε+1η2(e,z)g(z) +Γ(ε+2)ηε+2(e,z) Jε[e+η(z,e)]+g(e), |
Combining I1 and I2 with (2.2), we get (2.3).
Remark 2.1. If we set ε=1 and η(c,e)=c−e in Lemma 2.1, we get (Lemma 1 in [11]).
Theorem 2.1. Assume that all the assumptions as defined in Lemma 2.1 and |g′′| is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ηε+2(z,c)(ε+1)(ε+3)η(e,c)g{|g′′(z)|+|g′′(c)|1ε+2g}+ ηε+2(e,z)(ε+1)(ε+3)η(e,c)g{|g′′(z)|+|g′′(e)|1ε+2g}. | (2.3) |
satisfies for v∈[0,1].
Proof. From Lemma 2.1 and since |g′′| is preinvex function on [c,c+η(e,c)], we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1g{v|g′′(z)|+(1−v)|g′′(c)|g}dv+ηε+2(e,z)(ε+1)η(e,c)∫10vε+1g{v|g′′(z)|+(1−v)|g′′(e)|g}dv≤ηε+2(z,c)(ε+1)(ε+3)η(e,c)g{|g′′(z)|+|g′′(c)|1ε+2g}+ ηε+2(e,z)(ε+1)(ε+3)η(e,c)g{|g′′(z)|+|g′′(e)|1ε+2g}. |
This completes the proof.
Remark 2.2. If we set ε=1 and η(c,e)=c−e, then from Theorem 2.1, we get (Theorem 4 in [11]) with s=1.
Corollary 2.1. By using Theorem 2.1 with |g′′|≤M, we get the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M(1(ε+1)(ε+2)η(e,c)) g[ηε+2(z,c)+ ηε+2(e,z)g]. |
Remark 2.3. If we set ε=1 and η(c,e)=c−e, then from Corollary 2.1, we recapture (Theorem 2.1, [32]).
Corollary 2.2. If we set η(c,e)=c−e and z=c+e2, in Corollary 2.1, we get the mid-point inequality
|Γ(ε+1)(e−c)g{Jε(c+e2)−g(c)+Jε(c+e2)+g(e)g}−(e−c2)ε−1g(z)|≤M(e−c)ε+12ε+1g(1(ε+1)(ε+2)g). |
Theorem 2.2. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ (1(ε+1)p+1)1p×g[ηε+2(z,c)(ε+1)η(e,c)(|g′′(z)|q+|g′′(c)|q2)1q+ηε+2(e,z)(ε+1)η(e,c)(|g′′(z)|q+|g′′(e)|q2)1qg], | (2.4) |
satisfies for v∈[0,1], where q−1+p−1=1.
Proof. Suppose that p>1. From Lemma 2.1, by using the well-known Hölder integral inequality and the preinvexity of |g′′|q, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g| | (2.5) |
≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv | (2.6) |
≤ ηε+2(z,c)(ε+1)η(e,c) (∫10v(ε+1)pdv)1p(∫10|g′′(c+vη(z,c))|qdv)1q+ηε+2(e,z)(ε+1)η(e,c)(∫10v(ε+1)pdv)1p(∫10|g′′(e+vη(z,e))|qdv)1q. | (2.7) |
Since |g′′|q is preinvexity on [c,c+η(e,c)], we obtain
∫10|g′′(c+vη(z,c))|qdv≤∫10g{v|g′′(z)|q+(1−v)|g′′(c)|qg}dv= |g′′(z)|q+|g′′(c)|q2, | (2.8) |
and
∫10|g′′(e+vη(z,e))|qdv≤∫10g{v|g′′(z)|q+(1−v)|g′′(e)|qg}dv= |g′′(z)|q+|g′′(e)|q2. | (2.9) |
By using (2.8) and (2.9) with (2.7), we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ (1(ε+1)p+1)1p×g[ηε+2(z,c)(ε+1)η(e,c)(|g′′(z)|q+|g′′(c)|q2)1q+ηε+2(e,z)(ε+1)η(e,c)(|g′′(z)|q+|g′′(e)|q2)1qg]. |
This completes the proof.
Remark 2.4. If we set ε=1 and η(c,e)=c−e, then from Theorem 2.2, we get ( Theorem 5, [11]) with s=1.
Corollary 2.3. Using Theorem 2.2 with |g′′|≤M, we get
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M(1(ε+1)p+1)1p g[ ηε+2(z,c)(ε+1)η(e,c)+ ηε+2(e,z)(ε+1)η(e,c)g]. |
Corollary 2.4. If in Corollary 2.3, we set η(c,e)=c−e and z=c+e2, then we get the mid-point inequality
|Γ(ε+1)(e−c)g{Jε(c+e2)−g(c)+Jε(c+e2)+g(e)g}−(e−c2)ε−1g(z)|≤M(e−c)ε+1(ε+1)2ε+1 (1(ε+1)p+1)1p. |
Theorem 2.3. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q≥1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ (1ε+2)1−1qg[ηε+2(z,c)(ε+1)η(e,c)(|g′′(z)|qε+3+|g′′(c)|q(ε+2)(ε+3))1q+ηε+2(e,z)(ε+1)η(e,c)(|g′′(z)|qε+3+|g′′(e)|q(ε+2)(ε+3))1qg], | (2.10) |
satisfies for v∈[0,1].
Proof. Suppose that q≥1. From Lemma 2.1, by using the power-mean integral inequality and preinvexity of |g′′|q, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv |
≤ ηε+2(z,c)(ε+1)η(e,c) (∫10vε+1dv)1−1q(∫10|g′′(c+vη(z,c))|qdv)1q+ηε+2(e,z)(ε+1)η(e,c)(∫10vε+1dv)1−1q(∫10|g′′(e+vη(z,e))|qdv)1q. | (2.11) |
Since |g′′|q is preinvexity on [c,c+η(e,c)], we obtain
∫10vε+1|g′′(c+vη(z,c))|qdv≤∫10vε+1g{v|g′′(z)|q+(1−v)|g′′(c)|qg}dv= |g′′(z)|qε+3+|g′′(c)|q(ε+2)(ε+3) | (2.12) |
and
∫10vε+1|g′′(e+vη(z,e))|qdv≤∫10vε+1g{v|g′′(z)|q+(1−v)|g′′(e)|qg}dv= |g′′(z)|qε+3+|g′′(e)|q(ε+2)(ε+3). | (2.13) |
By using (2.12) and (2.13) with (2.11), we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ (1ε+2)1−1qg[ηε+2(z,c)(ε+1)η(e,c)(|g′′(z)|qε+3+|g′′(c)|q(ε+2)(ε+3))1q+ηε+2(e,z)(ε+1)η(e,c)(|g′′(z)|qε+3+|g′′(e)|q(ε+2)(ε+3))1qg]. |
This completes the proof.
Remark 2.5. If we set ε=1 and η(c,e)=c−e, then from Theorem 2.3, we get (Theorem 6, [11])with s=1.
Corollary 2.5. Under the same assumptions in Theorem 2.3 with |g′′|≤M, we get the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M(1(ε+1)(ε+2)η(e,c)) g[ ηε+2(z,c)+ ηε+2(e,z)g]. |
Corollary 2.6. If in Corollary 2.5, we set η(c,e)=c−e and z=c+e2, then we get the mid-point inequality
|Γ(ε+1)(e−c)g{Jε(c+e2)−g(c)+Jε(c+e2)+g(e)g}−(e−c2)ε−1g(z)|≤M(e−c)ε+1(ε+1)(ε+2)2ε+1. |
Theorem 2.4. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g′′(z)|q+|g′′(c)|q2qg}+ηε+2(e,z)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g′′(z)|q+|g′′(e)|q2qg}, | (2.14) |
satisfies for v∈[0,1].
Proof. From Lemma 2.1, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv. |
By using the Young's inequality as
xy < 1pxp+1qyq. |
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c)g{1p∫10v(ε+1)pdv+1q∫10|g′′(c+vη(z,c))|qdvg}+ ηε+2(e,z)(ε+1)η(e,c)g{1p∫10v(ε+1)pdv+1q∫10|g′′(e+vη(z,e))|qdvg}≤ ηε+2(z,c)(ε+1)η(e,c)g{1p∫10v(ε+1)pdv+1q∫10g{v|g′′(z)|q+(1−v)|g′′(c)|qg}g}+ ηε+2(e,z)(ε+1)η(e,c) g{1p∫10v(ε+1)pdv+1q∫10g{v|g′′(z)|q+(1−v)|g′′(e)|qg}g}≤ ηε+2(z,c)(α+1)η(e,c)g{1((ε+1)p+1)p+|g′′(z)|q+|g′′(c)|q2qg}+ηε+2(e,z)(ε+1)η(e,c)g{1((ε+1)p+1)p+|g′′(z)|q+|g′′(e)|q2qg}. |
This completes the proof.
Corollary 2.7. If we set η(c,e)=c−e and ε=1 in Theorem 2.4, we get
|1 e−c∫ecg(u)du−g(z)+(z−c+e2)g′(z)|≤(z−c)32(e−c)g[1(2p+1)p+|g′′(z)|q+|g′′(c)|q2qg]+(e−z)32(e−c)g[1(2p+1)p+|g′′(z)|q+|g′′(e)|q2qg]. |
Corollary 2.8. If in Theorem 2.4, we set η(c,e)=c−e and z=c+e2, then we get the mid-point inequality
|Γ(ε+1)(e−c)g{Jε(c+e2)−g(c)+Jε(c+e2)+g(e)g}−(e−c2)ε−1g(z)|≤(e−c)ε+12ε+2(ε+1)g{2((ε+1)p+1)p+|g′′(c+e2)|q+|g′′(c)|q2q+|g′′(c+e2)|q+|g′′(e)|q2qg}. |
Theorem 2.5. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q>1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g| | (2.15) |
≤ ηε+2(z,c)(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p(16|g′′(z)|q+13|g′′(c)|q)1q+(1(ε+1)p+2)1p(13|g′′(z)|q+16|g′′(c)|q)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p(16|g′′(z)|q+13|g′′(e)|q)1q+(1(ε+1)p+2)1p(13|g′′(z)|q+16|g′′(e)|q)1qg], |
satisfies for v∈[0,1], where q−1+p−1=1.
Proof. From Lemma 2.1, by using the Hölder-İşcan integral inequality (see in [33]) and the preinvexity of |g′′|q, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv |
≤ ηε+2(z,c)(ε+1)η(e,c)g[(∫10(1−v)v(ε+1)pdv)1p(∫10(1−v)|g′′(c+vη(z,c))|qdv)1q+(∫10v(ε+1)p+1dv)1p(∫10v|g′′(c+vη(z,c))|qdv)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(∫10(1−v)v(ε+1)pdv)1p(∫10(1−v)|g′′(e+vη(z,e))|qdv)1q |
+(∫10v(ε+1)p+1dv)1p(∫10v|g′′(e+vη(z,e))|qdv)1qg]≤ ηα+2(z,c)(ε+1)η(e,c)g[(∫10(1−v)v(ε+1)pdv)1p(∫10(1−v){v|g′′(z)|q+(1−v)|g′′(c)|q}dv)1q |
+(∫10v(ε+1)p+1dv)1p(∫10v{v|g′′(z)|q+(1−v)|g′′(c)|q}dv)1qg]+ ηε+2(e,z)(ε+1)η(e,c)g[(∫10(1−v)v(ε+1)pdv)1p(∫10(1−v){v|g′′(z)|q+(1−v)|g′′(e)|q}dv)1q+(∫10v(ε+1)p+1dv)1p(∫10v{v|g′′(z)|q+(1−v)|g′′(e)|q}dv)1qg]. |
After simplification, we get (2.15). This completes the proof.
Corollary 2.9. Using the same assumptions in Theorem 2.5 with |g′′|≤M, we get
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M 21q(ε+1)η(e,c)g[(1(εp+p+1)(εp+p+2))1p+(1(ε+1)p+2)1pg]×g[ηε+2(z,c)+ηε+2(e,z)g]. |
Theorem 2.6. Assume that all the assumptions as defined in Lemma 2.1 and |g′′|q, q≥1 is preinvex function on [c,c+η(e,c)], then for allε>0, the following inequality
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))1−1q(|g′′(z)|q(ε+3)(ε+4)+2|g′′(c)|q(ε+2)(ε+3)(ε+4))1q | (2.16) |
+(1ε+3)1−1q(|g′′(z)|qε+4+|g′′(c)|q(ε+3)(ε+4))1qg]+ηε+2(e,z)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))1−1q(|g′′(z)|q(ε+3)(ε+4)+2|g′′(e)|q(ε+2)(ε+3)(ε+4))1q+(1ε+3)1−1q(|g′′(z)|qε+4+|g′′(e)|q(ε+3)(ε+4))1qg], |
satisfies for v∈[0,1], where q−1+p−1=1.
Proof. From Lemma 2.1, improved power-mean integral inequality(see in [33]) and the preinvexity of |g′′|q, we obtain
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤ ηε+2(z,c)(ε+1)η(e,c) ∫10vε+1|g′′(c+vη(z,c))|dv +ηε+2(e,z)(ε+1)η(e,c) ∫10vε+1|g′′(e+vη(z,e))|dv≤ ηε+2(z,c)(ε+1)η(e,c)g[(∫10(1−v)vε+1dv)1−1q(∫10(1−v)vε+1|g′′(c+vη(z,c))|qdv)1q+ (∫10vε+2dv)1−1q(∫10vε+2|g′′(c+vη(z,c))|qdv)1qg] |
+ηε+2(e,z)(ε+1)η(e,c)g[(∫10(1−v)vε+1dv)1−1q(∫10(1−v)vε+1|g′′(e+vη(z,e))|qdv)1q+ (∫10vε+2dv)1−1q(∫10vε+2|g′′(e+vη(z,e))|qdv)1qg]≤ ηε+2(z,c)(ε+1)η(e,c)g[(∫10(1−v)vε+1dv)1−1q×(∫10(1−v)vε+1{v|g′′(z)|q+(1−v)|g′′(c)|q}dv)1q+ (∫10vε+2dv)1−1q(∫10vε+2{v|g′′(z)|q+(1−v)|g′′(c)|q}dv)1qg]+ηε+2(e,z)(ε+1)η(e,c)g[(∫10(1−v)vε+1dv)1−1q(∫10(1−v)vε+1{v|g′′(z)|q+(1−v)|g′′(e)|q}dv)1q+ (∫10vε+2dv)1−1q(∫10vε+2{v|g′′(z)|q+(1−v)|g′′(e)|q}dv)1qg] |
≤ ηε+2(z,c)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))1−1q(|g′′(z)|q(ε+3)(ε+4)+2|g′′(a)|q(ε+2)(ε+3)(ε+4))1q |
+(1ε+3)1−1q(|g′′(z)|qε+4+|g′′(c)|q(ε+3)(ε+4))1qg]+ηε+2(e,z)(ε+1)η(e,c)g[ (1(ε+2)(ε+3))1−1q(|g′′(z)|q(ε+3)(ε+4)+2|g′′(e)|q(ε+2)(ε+3)(ε+4))1q+(1ε+3)1−1q(|g′′(z)|qε+4+|g′′(e)|q(ε+3)(ε+4))1qg]. |
This completes the proof.
Corollary 2.10. Using the same assumption of Theorem 2.6 with |g′′|≤M, we get
g|ηε+1(z,c)−ηε+1(e,z)(ε+1)η(e,c)g′(z)− ηε(z,c)+ηε(e,z)η(e,c)g(z)+Γ(ε+1)η(e,c)g{Jε[c+η(z,c)]−g(c)+Jε[e+η(z,e)]+g(e)g}g|≤M (ε+1)(ε+2)η(e,c)g[ηε+2(z,c)+ηε+2(e,z)g]. |
We recall the first kind modified Bessel function ℑm, which has the series representation (see [42], p.77)
ℑm(ζ)=Σn≥0(ζ2)m+2nn!Γ(m+n+1). |
where ζ∈ℜ and m>−1, while the second kind modified Bessel function gm (see [42], p.78) is usually defined as
gm(ζ)=π2 ℑ−m(ζ)−ℑm(ζ)sinmπ. |
Consider the function Ωm(ζ):ℜ→[1,∞) defined by
Ωm(ζ)=2mΓ(m+1)ζ−mℏm(ζ), |
where Γ is the gamma function.
The first order derivative formula of Ωm(ζ) is given by [42]:
Ω′m(ζ)=ζ2(m+1)Ωm+1(ζ) | (3.1) |
and the second derivative can be easily calculated from (3.1) as
Ω′′m(ζ)=ζ24(m+1)(m+2) Ωm+2(ζ) + 12(m+1)Ωm+1(ζ). | (3.2) |
and the third derivative can be easily calculated from (3.2) as
Ω′′′m(ζ)=ζ34(m+1)(m+2)(m+3)Ωm+3(ζ)+3ζ4(m+1)(m+2)Ωm+2(ζ). | (3.3) |
Proposition 3.1. Suppose that m>−1 and 0<c<e. Then we get the inequality
g|Ωm(e)−Ωm(c)e−c−z2(m+1)Ωm+1(z)+(z−c+e2)×g{z24(m+1)(m+2)Ωm+2(z)+12(m+1)Ωm+1(z)g}g|≤(z−c)32(e−c)g[1(2p+1)p+12qg{(z38(m+1)(m+2)(m+3)Ωm+3(z)+3z4(m+1)(m+2)Ωm+2(z))q+(c38(m+1)(m+2)(m+3)Ωm+3(z)+3c4(m+1)(m+2)Ωm+2(c))qg}g]+(e−z)32(e−c)g[1(2p+1)p+12qg{(z38(m+1)(m+2)(m+3)Ωm+3(z)+3z4(m+1)(m+2)Ωm+2(z))q+(e38(m+1)(m+2)(m+3)Ωm+3(z)+3e4(m+1)(m+2)Ωm+2(e))qg}g]. |
Proof. The assertion follows immediately from Corollary 2.7 using g(ζ)=Ω′m(ζ), ζ>0 and the identities (3.2) and (3.3).
In this paper, we have defined an idea of fractional integral inequalities whose second derivatives are preinvex functions. We also investigated and proved a new lemma for the second derivatives of Riemann-Liouville fractional integral operator. Some new special cases are discovered in the form of corollaries. We hope that the strategies of this paper will motivate the researchers working in functional analysis, information theory and statistical theory. It is quite open to think about Ostrowski variants for generalized integral operators having Atangana-Baleanu operator etc. by applying generalized preinvexity. The results, which we have presented in this article, will potentially motivate researchers to study analogous and more general integral inequalities for various other kinds of fractional integral operators.
All authors have no conflict of interest.
[1] | X. Mao, Stochastic Differential Equations and Applications, Chichester, UK: Horwood, 1997. |
[2] |
P. Guasoni, No arbitrage with transaction costs, with fractional Brownian motion and beyond, Math. Financ., 16 (2006), 569-582. doi: 10.1111/j.1467-9965.2006.00283.x
![]() |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science B.V., 2006. |
[4] | Zh. Li, W. Zhan, L. Xu, Stochastic differential equations with time-dependent coefficients driven by fractional Brownian motion, Physica A, Volume 530, 15 September 2019, 121565. |
[5] |
G. Denk, R. Winkler, Modelling and simulation of transient noise in circuit simulation, Math. Comp. Model. Dynm., 13 (2007), 383-394. doi: 10.1080/13873950500064400
![]() |
[6] |
S. C. Kou, Stochastic modeling in nanoscale biophysics: subdiffusion within proteins, Ann. Appl. Stat., 2 (2008), 501-535. doi: 10.1214/07-AOAS149
![]() |
[7] |
F. E. Benth, On arbitrage-free pricing of weather derivatives based on fractional Brownian motion, Appl. Math. Financ., 10 (2003), 303-324. doi: 10.1080/1350486032000174628
![]() |
[8] |
P. Cheridito, Mixed fractional Brownian motion, Bernoulli, 7 (2001), 913-934. doi: 10.2307/3318626
![]() |
[9] |
J. L. da Silva, M. Erraoui, E. H. Essaky, Mixed stochastic differential equations: Existence and uniqueness result, J. Theor. Probab., 31 (2018), 1119-1141. doi: 10.1007/s10959-016-0738-9
![]() |
[10] | Y. Krvavych, Yu. Mishura, Exponential formula and Girsanov theorem for mixed semilinear stochastic differential equations, Birkhäuser Verlag Basel/Switzerland: Trends in Mathematics, 2001. |
[11] |
Yu. S. Mishura, S. V. Posashkova, Stochastic differential equations driven by a Wiener process and fractional Brownian motion: Convergence in Besov space with respect to a parameter, Comput. Math. Appl., 62 (2011), 1166-1180. doi: 10.1016/j.camwa.2011.02.032
![]() |
[12] |
G. Shevchenko, T. Shalaiko, Malliavin regularity of solutions to mixed stochastic differential equations, Stat. Probabil. Lett., 83 (2013), 2638-2646. doi: 10.1016/j.spl.2013.08.013
![]() |
[13] |
J. Guerra, D. Nualart, Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion, Stoch. Anal. Appl., 26 (2008), 1053-1075. doi: 10.1080/07362990802286483
![]() |
[14] | Yu. S. Mishura, G. M. Shevchenko, Mixed stochastic differential equations with long-range dependence: Existence, uniqueness and convergence of solutions, Comput. Math. Appl., 64 (2012), 3217-3227. |
[15] |
W. G. Liu, J. W. Luo, Modified Euler approximation of stochastic differential equation driven by Brownian motion and fractional Brownian motion, Commun. Stat. Theor. M., 46 (2017), 7427-7443. doi: 10.1080/03610926.2016.1152487
![]() |
[16] | Yu. S. Mishura, G. M. Shevchenko, Rate of convergence of Euler approximation of solution to mixed stochastic differential equation involving Brownian motion and fractional Brownian motion, Rand. Opera. Stoch. Equ., 19 (2011), 387-406. |
[17] | D. Nualart, A. Răşcanu, Differential equation driven by fractional Brownian motion, Collect. Math., 53 (2002), 55-81. |
[18] |
Yu. S. Mishura, G. M. Shevchenko, The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion, Stochastics, 80 (2008), 489-511. doi: 10.1080/17442500802024892
![]() |
[19] |
G. Shevchenko, Mixed fractional stochastic differential equations with jumps, Stochastics, 86 (2014), 203-217. doi: 10.1080/17442508.2013.774404
![]() |
[20] | P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Berlin: Springer, 1992. |
[21] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, In: Theory and Applications, Gordon and Breach Science Publishers, Yvendon, xxxvi+976 pp. ISBN: 2-88124-864-0, 1993. |
[22] |
L. C. Young, An inequality of Hölder type connected with Stieltjes integration, Acta. Math. Djursholm, 67 (1936), 251-282. doi: 10.1007/BF02401743
![]() |
[23] |
M. Zähle, Integration with respect to fractal functions and stochastic calculus I, Probab. Theory. Rel., 111 (1998), 333-374. doi: 10.1007/s004400050171
![]() |
[24] | Yu. S. Mishura, G. M. Shevchenko, Existence and uniqueness of the solution of stochastic differential equation involving wiener process and fractional Brownian motion with Hurst Index H > 1/2, Commun. Stat. Theor. M., 40 (2011), 3492-3508. |
[25] |
Y. Z. Hu, K. Le, A multiparameter Garsia-Rodemich-Rumsey inequality and some applications, Stoch. Proc. Appl., 123 (2013), 3359-3377. doi: 10.1016/j.spa.2013.04.019
![]() |
[26] |
E. Alòs, D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stoch. Stoch. Rep., 75 (2003), 129-152. doi: 10.1080/1045112031000078917
![]() |
[27] |
D. Nualart, B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, Stoch. Proc. Appl., 119 (2009), 391-409. doi: 10.1016/j.spa.2008.02.016
![]() |
[28] |
A. Neuenkirch, I. Nourdin, Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion, J. Theor. Probab., 20 (2007), 871-899. doi: 10.1007/s10959-007-0083-0
![]() |
[29] | S. Cambanis, Y. Hu, Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design, Stoch. Stoch. Rep., 59 (1996), 211-240. |
[30] |
G. M. J. Schoenmakers, P. E. Kloeden, Robust option replication for a Black-Scholes model extended with nondeterministic trends, J. Appl. Math. Stoch. Analy., 12 (1999), 113-120. doi: 10.1155/S104895339900012X
![]() |
1. | Mahyar Abbasian, Elahe Khatibi, Iman Azimi, David Oniani, Zahra Shakeri Hossein Abad, Alexander Thieme, Ram Sriram, Zhongqi Yang, Yanshan Wang, Bryant Lin, Olivier Gevaert, Li-Jia Li, Ramesh Jain, Amir M. Rahmani, Foundation metrics for evaluating effectiveness of healthcare conversations powered by generative AI, 2024, 7, 2398-6352, 10.1038/s41746-024-01074-z | |
2. | Muhammad Asif, Monica Palmirani, 2024, Chapter 4, 978-3-031-68210-0, 34, 10.1007/978-3-031-68211-7_4 | |
3. | Andrea Zielinski, Simon Hirzel, Sonja Arnold-Keifer, 2024, Enhancing Digital Libraries with Automated Definition Generation, 9798400710933, 1, 10.1145/3677389.3702536 |