-
AIMS Mathematics, 2020, 5(1): 385-398. doi: 10.3934/math.2020026.
Research article Special Issues
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Existence results for fractional order boundary value problem with nonlocal non-separated type multi-point integral boundary conditions
Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan
Received: , Accepted: , Published:
Special Issues: Initial and Boundary Value Problems for Differential Equations
Keywords: nonlocal; non-separated; fractional BVP; existence; unique solution; Hyers-Ulam stability
Citation: Nayyar Mehmood, Niaz Ahmad. Existence results for fractional order boundary value problem with nonlocal non-separated type multi-point integral boundary conditions. AIMS Mathematics, 2020, 5(1): 385-398. doi: 10.3934/math.2020026
References:
- 1. S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in Fractional Differential Equations, Springer Science & Business Media, 2012.
- 2. B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. value probl., 2009 (2009), 708576.
-
3. B. Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybri., 4 (2010), 134-141.
- 4. B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton. Fract., 1 (2016), 234-241.
- 5. A. Alsaedi, M. Alsulami, R. P. Agarwal, et al. Some new nonlinear second-order boundary value problems on an arbitrary domain, Adv. Differ. Equ., 2018 (2018), 227.
- 6. B. Ahmad, S. K. Ntouyas, A. Alsaedi, Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions, Bound. Value Probl., 2019 (2019), 109.
- 7. B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence theory for fractional differential equations with nonlocal integro-multipoint boundary conditions with applications, Appl. Eng. Life Soc. Sci., 1 (2019), 271.
- 8. B. Ahmad, S. K. Ntouyas, A. Alsaedi, et al. Existence theory for fractional differential equations with non-separated type nonlocal multi-point and multi-strip boundary conditions, Adv. Differ. Equ., 2018 (2018), 89.
- 9. R. P. Agarwal, A. Alsaedi, N, Alghamdi, et al. Existence results for multi-term fractional differential equations with nonlocal multi-point and multi-strip boundary conditions, Adv. Differ. Equ., 2018 (2018), 342.
-
10. K. Balachandran, J. Y. Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal. Theor., 71 (2009), 4471-4475.
-
11. L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. anal. Appl., 162 (1991), 494-505.
- 12. M. Caputo, Distributed order differential equations modelling dielectric induction and diffusion, Fract. Calc. Appl. Anal., 4 (2001), 421-442.
- 13. R. J. DiPerna, P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math., 1 (1989), 321-366.
-
14. J. Ginibre, G. Velo, The global Cauchy problem for the non linear Klein-Gordon equation, Math. Z., 189 (1985), 487-505.
- 15. D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA, 27 (1941), 222.
- 16. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006.
-
17. V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theor., 69 (2008), 2677-2682.
-
18. V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal. Theor., 69 (2008), 3337-3343.
- 19. S. K. Ntouyas, A. Alsaedi, B. Ahmad, Existence theorems for mixed Riemann-Liouville and Caputo fractional differential equations and inclusions with nonlocal fractional integrodifferential boundary conditions, Fract. Fract., 3 (2019), 21.
- 20. K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, 1974.
- 21. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998.
-
22. T. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc., 72 (1978), 297-300.
- 23. I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 2010 (2010), 103-107.
-
24. G. S. Teodoro, J. T. Machado, E. C. De Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208.
- 25. S. M. Ulam, Problems in Modern mathematics, New York: John-Wiley & Sons Inc., 1964.
- 26. Y. Zhou, J. R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, 2016.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *