
AIMS Mathematics, 2020, 5(1): 385398. doi: 10.3934/math.2020026.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Existence results for fractional order boundary value problem with nonlocal nonseparated type multipoint integral boundary conditions
Department of Mathematics and Statistics, International Islamic University, H10, Islamabad, Pakistan
Received: , Accepted: , Published:
Special Issues: Initial and Boundary Value Problems for Differential Equations
Keywords: nonlocal; nonseparated; fractional BVP; existence; unique solution; HyersUlam stability
Citation: Nayyar Mehmood, Niaz Ahmad. Existence results for fractional order boundary value problem with nonlocal nonseparated type multipoint integral boundary conditions. AIMS Mathematics, 2020, 5(1): 385398. doi: 10.3934/math.2020026
References:
 1. S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in Fractional Differential Equations, Springer Science & Business Media, 2012.
 2. B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. value probl., 2009 (2009), 708576.
 3. B. Ahmad, S. Sivasundaram, Existence of solutions for impulsive integral boundary value problems of fractional order, Nonlinear Anal. Hybri., 4 (2010), 134141.
 4. B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton. Fract., 1 (2016), 234241.
 5. A. Alsaedi, M. Alsulami, R. P. Agarwal, et al. Some new nonlinear secondorder boundary value problems on an arbitrary domain, Adv. Differ. Equ., 2018 (2018), 227.
 6. B. Ahmad, S. K. Ntouyas, A. Alsaedi, Fractional order differential systems involving right Caputo and left RiemannLiouville fractional derivatives with nonlocal coupled conditions, Bound. Value Probl., 2019 (2019), 109.
 7. B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence theory for fractional differential equations with nonlocal integromultipoint boundary conditions with applications, Appl. Eng. Life Soc. Sci., 1 (2019), 271.
 8. B. Ahmad, S. K. Ntouyas, A. Alsaedi, et al. Existence theory for fractional differential equations with nonseparated type nonlocal multipoint and multistrip boundary conditions, Adv. Differ. Equ., 2018 (2018), 89.
 9. R. P. Agarwal, A. Alsaedi, N, Alghamdi, et al. Existence results for multiterm fractional differential equations with nonlocal multipoint and multistrip boundary conditions, Adv. Differ. Equ., 2018 (2018), 342.
 10. K. Balachandran, J. Y. Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal. Theor., 71 (2009), 44714475.
 11. L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. anal. Appl., 162 (1991), 494505.
 12. M. Caputo, Distributed order differential equations modelling dielectric induction and diffusion, Fract. Calc. Appl. Anal., 4 (2001), 421442.
 13. R. J. DiPerna, P. L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math., 1 (1989), 321366.
 14. J. Ginibre, G. Velo, The global Cauchy problem for the non linear KleinGordon equation, Math. Z., 189 (1985), 487505.
 15. D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA, 27 (1941), 222.
 16. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, 2006.
 17. V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. Theor., 69 (2008), 26772682.
 18. V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal. Theor., 69 (2008), 33373343.
 19. S. K. Ntouyas, A. Alsaedi, B. Ahmad, Existence theorems for mixed RiemannLiouville and Caputo fractional differential equations and inclusions with nonlocal fractional integrodifferential boundary conditions, Fract. Fract., 3 (2019), 21.
 20. K. Oldham, J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, 1974.
 21. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998.
 22. T. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc., 72 (1978), 297300.
 23. I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 2010 (2010), 103107.
 24. G. S. Teodoro, J. T. Machado, E. C. De Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195208.
 25. S. M. Ulam, Problems in Modern mathematics, New York: JohnWiley & Sons Inc., 1964.
 26. Y. Zhou, J. R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific, 2016.
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *