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Abstract: In this article, we discuss the existence of solutions of a fractional boundary value problem
of order m € (1, 2], with nonlocal non-separated type integral multipoint boundary conditions. Shaefer
type and Krasnoselskii’s fixed point theorems are used to prove existence results for the given problem.
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1. Introduction

Fractional calculus is a natural generalization of ordinary calculus when the order of the derivative
is non-integer. Many fractional operators are defined like, Riemman-Liouville, Hadamard, Caputo
and Grunwald-Letnikov [12,20,21]. The choice of the operator depends upon the considered system.
Due to the variations in the physical systems, many researchers are defining a number of fractional
operators, for details, we refer the readers to the article [24].

Many of the complex physical problems may be better understood in the framework of fractional
differential equations. One can find applications of fractional calculus in diverse fields like biology,
chemistry, physics, fluid mechanics, economics and social sciences, etc. [1,16,17,21,26].

For theoretical details of fractional differential equations see [16, 18] and the references cited
therein. The existence results for non-integer order differential equations are discussed in many
articles, for example, see [10, 11, 13, 14]. Stability analysis of fractional differential equations is an
important aspect of the qualitative theory of fractional differential equations form numerical and
optimization point of view. Ulam in [25], raised the question “Under what conditions there exist an
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additive mapping near to an approximate additive mapping?”’. This question initiated the study of
stability of differential equations and the answer of Ulam’s question was given by Hyers in [15]. Later
on Rassias [22], developed a technique for Hyers-Ulam stability of linear and nonlinear mappings.
The theory of fractional equations involving different kinds of boundary conditions has always been
remained a field of interest in physical sciences. Non-local and integral boundary conditions are
widely used where classical boundary conditions fail to examine many physical properties of the
models. Many researchers have already been involved in the existence theory of boundary value
problems involving non-local and integral boundary conditions, for example [2—4, 6-9, 19, 23].
Recently Alsaedi et al. [5], discussed the existence theory of the following second order boundary
value problem with non-local non-separated type integral multi-point boundary conditions on an

arbitrary domain.
u' ()= ft,u®),a<t<T,a TEeR,

au(a) + au(T) = a3 fj u(t)dr + é yu,), (1.1)
By (@) + B w(T) = By [ /(s + X p, (),

where a < < v; < T. Motivated by [5], we prove the existence results for solution of a fractional
boundary value problem involving Caputo fractional derivative of order 1 < m < 2 and nonlocal non-
separated type integral multipoint boundary conditions involving Caputo fractional derivative of order
0 < p <1 on an arbitrary domain. In fact we consider the following fractional differential equation

“‘D"u(t) = F(t,u(t)) where 1| <m < 2, (1.2)

with boundary conditions

4 e
yiu@) +yu(T) = s f u()dr +7, Y Da(v,) (13)
a =1

0, ‘D’u(a) + o, “D’u(T)

é’ e
0 f “Drut)dr + 0, Y p, ‘D'u(v), 0<p<1.
a =1
Clearly form =2, p =1 and y, = 9, = 1, the above problems (1.2)—(1.3) reduces to (1.1).

The remaining part of the article is arranged as follows. Section 2 contains the existence results for
the fractional boundary value problems (1.2)—(1.3) which are proved by applying Schaefer type and
Krasnoselskii’s fixed point theorems. In Section 3, we prove an existence and uniqueness result by
using Banach contraction principle. Hyers-Ulam stability is discussed in Section 4.

2. Existence results via Schaefer type and Krasnoselskii’s fixed point theorems

Let H = C [a, T] be the Banach space of all continuous functions defined on closed interval [a, T] C
R with norm

llull = sup |u (@) 2.1)
t€la,T]
for u € H. Set .
=y - - -y )0, (2.2)

=1
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and

(2.3)

T — )P _g)*? ¢ = I-p
- (T -a) {-a _42 (v, —a)

“Te-p “TG-p “4LPTa-p

The following lemma will be crucial for coming existence results.
Lemma 2.1. Let o € H and @, and g are nonzero. Then the solution of the following linear problem
(2.4) with boundary conditions (1.3)

‘D"w(t)=0(), fora<t<T 2.4)

has an integral representation given as

3 (t—ry™! 1 (¢ &-rr 03 m—
u(t) = f ) 0'(r)dr+Ef(ﬁ 3F(m+l)+r(m p+l) (t))({ r)" P o(r)dr

(T —ry () m-p-1
_E‘fa (,32 TGm) +F(m—p)n(t))(T_r) P> o(r)dr

1 © =) -

2 I (ﬁ R T ‘"(t)) O = ledr 25)

where , )
a2:72(T—a)—73(§_2a) —’)/421%(\&—&), (2.6)

=1
nn=a(t-a)-a (2.7)

and

K = Ba. (2.8)

Proof. The general solution for linear problem
‘D'u(ty=0@),a<t<Tandl <m<?2

as given in [16], is
! _ -1
u(t) = f %a(r)dr —di—dy(t-a) 2.9)

for some real constants d; and d,. Making use of (1.3),(2.2) and (2.6) in (2.9), we have

T — ¥y~ 1 4 o\
diay +dra, = yzf ( I )) o(r)dr — vy, %O’(I’)d?’

_ ym—1
_74219 f (vtr(r)) o(r)dr.

_ ym—1
d = C¥1( d2a/2+y2f 7 I )) o(r)dr
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)ml

7, lfi_ 2 O'(r)dr—y4219f (VLF( ) O'(r)dr].

From (2.9)

m—1
u(t) = f @ F(r)) o (Pdr — dy — dot

(2.10)

taking Caputo fractional derivative of order p € (0, 1) on both sides and using its properties, we get

(t—a)'?

( )mpl
‘DPu (r) = fﬁ (r)dr—dzr(z_ )

Now using the second boundary condition from (1.3) in (2.11) we get

(T - ryrr-! (T -a)'"
% ) TTm—p) TV eh T

4 T _ m—n—1 _ 2—
= Q%f uo'(’”)di’dT—&dz €-a)”

I'(m - p) 2-pI'2-p)
Vi (VL _ r)m p—1 e (V[ _ a)l—p
+04 ) P —cr(r)dr —04 ) Plr—,
* Z y -p) ! Z rQ2-p)
simplifying, we obtain
T-a)'" G- o e
“Te-p “e-pre-p “4LPTe-p

_ " - S (!
= 0,  Tn-p) o(r)dr — o, ;pt ‘fa T = p) o(r)dr

L=y
_Q3fa m—pTm—p°

Using (2.3) in above equation, we have

T _ am—p-1 e -
d2 = 1(92 (T(#O'(F)dr—ﬁ%f MO’(V) dr

B ) « Tm—p+1)
_ 1
—&Zm a %a(mﬁ),
substituting (2.12) in (2.10) gives
_ (Tt N (et
" ﬁz(gz T e | e 0
v, _a\m 1 m—1
_Q4Zp‘ a %o—(r)dr)+ ( f (TF( )) o(r)dr
e RO

;| =——cdr-v, Z 9, O'(r)dr] .

. Tm+1) « T'(m

(2.11)

(2.12)

(2.13)
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Making use of (2.7),(2.8),(2.12) and (2.13) in (2.9) , we get the required solution
t—-rm!
u(t) = f ——o(r)dr
I'(m)

(& -nrP 03 .
+E£ (B 3F(m+l)+]"(m +1)U())({—I’) pO‘(r)dr

1 (T —r)y ) m—p—1
—— f (ﬁ’ 2 r(m) +F(m_p)n(t))(T—r) Pl (r)dr

040, -
"k Zl f (B Y +F(m4 )(”)(V‘ P o (rdr.

O

The solution of boundary value problems (1.2)—(1.3) exists if and only if the following operator
Q : H — H defined by

4 _ -l
0t = [ LE—Frutyar

( (K—r)” 03

1o D Tt (r))(g—rWF(ru(r))dr

(T - ”)p %)
72 T(m) r(m— P)

n(t)) (T = " P 'F (ryu(r)) dr

)
1
_E f

Zl f (/374 , r(_r)) +F(fjp =t (r))(vt AP (ru () d,

(2.14)

has a fixed point.
To reduce computational complexities we set

(T -a)" | |§ a)™* | I(T—a) Z| |19(Vz—a)
“TmA1) |a| Bl Tm+2) " " T+ 1) £ "I Tm+1)

) (T — a) — ay & —ay" (T —ay"? p,(v, —a)
' K [|Q3|F(m—p+2) |2|F(m p+1) Z|4r(m p+l)) (215)

(@ r o v-a)
d“a_l'[m'r(mu) MLEvmray |4|Z T +1>)

G—a" T -a)"? pv.—a)"”
[|Q3|F(m_—p+2) ool Fp 7 *le 4|Zr(m = 1)] (2.16)

a(T—a)—a,
K

Theorem 2.2 (Schaefer). [16] Let H be a Banach space and Q : H — H be a completely continuous
mapping.  Then either the equation y = AQy has a solution for 4 = 1, or the set
{ye H:y=AQy for some 4 € (0, 1)} is unbounded.
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The following is the existence results by applying above fixed point theorem.
Theorem 2.3. Let F : [a,T] X R — R be a continuous function. If there exists L; > 0 such

that |F(¢z,u(?))] < L, for all t € [a,T], u € R, then there exists a solution of the boundary value
problems (1.2)—(1.3).

Proof. First it will be verified that the operator Q : H — H is completely continuous. Since F is
continuous, this implies the continuity of Q. For a positive constant €, define B, = {u € H : ||u|| < €} a

bounded set in H. We prove that the operator Q maps bounded sets into bounded sets of H. For u € B,
t € la,T], we consider

B Tt —r)y"!
IQull = sup | | = o—F(rur)dr
+x f (Brsras + r(m93,,+1)n(t)) (& = " F(ru(r)dr
-L [ (87252 + 52m(®) (T = 1)y~ F(r, u(r))dr
+2 2 )7 (BYa9. 5" + Z22n(®)) (v = )" P F(r, u(r)dr

=ay™! T-a" | % B v—a)"
7’3| Tm+2) |72| T+ T El |74 Ton+l) )

< IF(r, u(r))| [;;;;2’{3 == (

S a) al ( (=ay"P*! (T=ay""

{ pv—a)" P
|Q3 Ton—pr2) T |Q2 Ton—psD T |Q4 Tm—p+1) )]

< Lc, 2.17)

where c is defined by (2.15).

Next we show that operator Q : H — H maps bounded set into equicontinuous set of H. Fora < t; <
t, < T and u € B,, we consider

= (= !
. Tm)

Ly, €=r) o3 -
+le(ﬁ 2T P R p+1)77(t2))(§—r) P E(ru(r)dr

|(Qu)(22) — (Qu)(t))| < F(r, u(r)dr

1 T (T - ’,.)p %) m—p—1
oz [ (ﬁ O p)ﬂ(tz)) (T = 1" PG u()dr

1< v, (v, — )P 04P, .
* E ;f; (ﬁy“ﬁ‘ F(m) + r(m4_ p)ﬂ(fz)) (VL - 7') P 1F(V, u(r))dr

" =y
. T(m)

1 d ({_ )p Q m—
+le(ﬁ T D T p+1)n(t1))(§—r) P F(ru(r)dr

(T -ry (%) m—p—1
+ f (ﬁ Y T r(m_p)”(“))(T"”) P u(r)dr

+ F(r,u(r))dr
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Zf (574 L F( )) F(Sfi_)tp)’?(ll)) v, = P)" P F(r, u(r)dr

-t)" | =) (h-a)" | (-t)"
< IF(r, u(n)l [r(m+1) T T T TorD

ai(tp-11) (Ga)" ! T | < | | 2™
+| K | |Q%| Tm—pr2) T |92| Tin—p+1) +§1 |Q4 Tn—p+1)
(L—1)" (t—a)"—(r—a)" (t—1)"
< L [F(m+l) + T(n+1) + T(m+1)

20 (o T ol 2 + 5 ol ety

As t; — 1, the above expression approaches to zero independent of u € B.. Hence, by the Arzeld
Ascoli theorem, the operator Q : H — H is completely continuous. Finally, we show that the set
V={ueH:u=AQu, 0 <A< 1}is bounded. For u € V and ¢ € [a, T], and using inequalities (2.17)
and (2.15), we have

llull = sup [A(Qu)t| < Lyc.

tela,T]

Hence by Theorem 2.2, Q has a fixed point in H. |

Theorem 2.4 (Krasnoselskii). [16] Let Q be a closed bounded, convex and nonempty subset of a
Banach space X. Let g1, g, be the operators such that
(@) g1y1 + &2y2 € Q, whenever y;, y, € Q.
(if) g 1s compact and continuous;
(iii) g, is a contraction.
Then there exist y; € Q such that y; = g;y3 + g2y3.

We apply the above theorem to prove the following existence result.
Theorem 2.5. LetF : [a,T] X R — R be a continuous function satisfying:
H)IFt,u)—F@,v)|<Llu—v|,forallt€la,T], L>0,and u,v € R,
(H,) there exists a function u € C ([a, T],R*) with |F (t,u)| < u(t), ¥ (t,u) € [a, T] X R.
If d in (2.16) satisfies .

d< A (2.18)

then there exists a solution of problems (1.2)—(1.3).

Proof. Consider a set B, = {u € H : ||u|]| < r} with r > c|u||, clearly B, is a closed subset of H, where
c is given in (2.15). We decompose the operator Q defined in (2.14) into sum of two operators Q; and
0, on B, as follows:
Tt =r)y"!
(Quu)(0) = | —=——F(rulr)dr
« T(m)

and

_ 1 ({ - r)P %] m—
(Qu)(1) = EL (,3 Vit 1) + Tm 1)77(t)) (&= )" PF(rur))dr

_l ’ (T—’”)p+ 02
K 2Ty " Tm-p)

U(t)) (T = )" P F(ru(r))dr
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J%Z f ) (,8 9, ip (t)) (v, = " (r,u(r))dr.

YT m) T Tm=p)"

For u,v € B,, consider

1@+ 0l
— sup [ 5 o
g fa (BYs s + (D) (¢ = 7" F(r,v(r)dr
—1 [ (B2 + 22n(0) (T = ry = F(r v(r)dr
1 3 [ (Brad S5 + o) 0. = e

=" | |Bys| =™ | 1Bna| T=a)" | < |Bra| Dv—a)"
< el Sup][F(m+l) | r(m+2) |_ TonsD) T |_ Ton+1)

o31(t)

T

(=)™ P! |QzTI(1)| T-a)™" |Q477(I)| pv—a)"?
T'(m—-p+2) T(m—-p+1) T'(m—-p+1)

(T-a)" (¢-ay"! (T-a)" . < &, (v—a)"
< lull [F(m+1) (|73 Tn+2) |72| TmeD) T ;1 |74| Tont1) )

| G=ay™ ! | |<T ay"r | pvi—a)" "
3| T(n-p+2) %) L(m— p+1) 4] T(m-p+1)

lay (T-a)—as|
= (

<lulle <.

Thus Q,u + Q,v C B,, which verifies assumption (i) in Theorem 2.4. For u, v € B,, consider

1051 — O
[ 7 (Brs 2 + mmn0) € = 1" Frurdr

L (87,2 + w2m) (T = iy F(r u(r)dr

= sup
refa, T]

X
< (v (vl r)” 4P, m—p—1
+g[§1 ) ( D ton t Tone p)fl(t)) (v, = )" P F(r, u(r))dr]
¢ , .
=2 [ (Bt + ) € = " Fvo)dr
T ; .
— 1 (B2 + (D) (T = PP~ F(r, v(r)dr
5 % [0 (Brat e+ win) b= G, v(r))dr]
using (H1)
(L-a)™! (T-a)" w—a)"
< L[ (|73 Tm+2) T |7’2 T+ T |74| Z ¥, r(m+1))
o (T— a) a (=a)" P! (T=a)"? & pv—a)y"?
+| l 2| |Q3 Tn—p+2) |Q2| Tn—pt1) |Q4|L:1 Tn—p+1) )] [l = vl
=Ld|u-v|.

From (2.18), we have Ld < 1, so O, is a contraction.

Next, we show that Q; is compact and continuous. The continuity of F implies the continuity of Q,
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and since ||Qu|| < [|ul| g’;%, therefore Q; is uniformly bounded on B,.
Set sup |F(t,u)| = Fandfora<t <t <T, consider
tela,T1XB,

1Q1u(tz) = Qu(r))|

12 (tz _ r)m—l il (tl _ r)m—l

F(r,u(r))dr — F(r,u(r))dr

o T(m «  T(m)
N 1] (fz _ r)m—l 5] (fz _ I’)m_l il (ll _ }”)m_l
< A [ [ [ ]
[(tl —a)" (6 - a)’"]ﬁ-
C(m+1)

As t; — 1, the above expression tends to zero independent of u € B,. This implies that Q; is relatively
compact on B,. Hence, it follows by the Arzeld Ascoli theorem that the operator Q; is compact on B,.
Thus all the hypothesis of the Theorem 2.4, are satisfied. Therefore the problems (2.1)—-(1.3) has at
least one solution. O

3. Uniqueness of solution via Banach contraction

Theorem 3.1 (Banach). Let (M, p) be a complete metric space and 7 : M — M be a self mapping. If
there exists 6 € (0, 1) such that

p(Tx,Ty) < dp(x,y)

for all x,y € M. Then T has a unique fixed point.

Now we state and prove our result regarding uniqueness of solution.
Theorem 3.2. Suppose F : [a.T] x R — R is continuous and satisfying (H1). If L < ¢”!, where c is
defined in (2.15), then there exists a unique solution of the problems (1.2)—(1.3).

Proof. Set
sup F (£,0) = L, (3.1

t€la,T]

and choose € > IC_Lch > 0. We show that the mapping Q defined in (2.14) satisfies Q (B.) C B.. For

u€ B.and t € [a, T], we consider

Fu@)l = IF@u@®)-F0)]+F(0)
< |Ftu()—F(@0)+|F(0)
< Lull + L,.

Now for u € B,, consider

! _ ym—1
fa %F (rou () dr

Q@I = sup

tela,T]

L ¢-nr 05 .
+Efa (ﬁ73r(m+1)+r(m_p+l)n(t) (&= V" F (r,u(r)dr

AIMS Mathematics Volume 5, Issue 1, 385-398.



394

1 T —r)?
- f (ﬁyz(r(mr)) +F(sz_ )n(t))(T =" P (ru () dr

040, .
Zlf (/m T ) * om - p)"m)(v“” P (r () dr|

< (Le+Ly)c<e

Thus Q (B,) C B..
Now we show that Q is a contraction. For u,v € H, we have

m—1
|Qu—Qvl| = sup f = (F(r,u(r)) =F(r,v(r)dr
tela,T] r( )

¢-nr 03 e
—f(ﬁ s T Tons pH)n())({—r) P (F(ru(r) = F (rv () dr

T — r)?
——f (ﬁ 2( F(mr)) F(sz_ p)n(t)) (T =" "L (F (r,u(r) = F (r,v(r) dr

' Y
+E;fa (ﬁ S T »' (t))(v‘ D" E ()~ F (v () dr].

< Lellu—v, (3.2)

Since Lc < 1, therefore Q is contraction, so there exists a unique solution w of Q which is a unique
solution of (1.2)—(1.3). O

The following is the example that illustrate the above theorem to ensure the existence of a unique
solution.
Example 3.3. Consider the following non-separated multi-point fractional boundary value problem

1 .
‘DIPyur) = tan~' (u (0*° + €' cos t) +sint, 2 <t <3,

Vt+ 14

4 4
V3 f u(t)dr + vy, Z Hu(v,),
a =1

¢ 0.5 - 0.5
03 f ‘D u(t)dr + 0,4 ZpL ‘D™ u(v,),

=1

y1u(2) + y,u(3)

01 °D*u(2) + 0, ‘D™ u(3)

where y, = 1,7y, = %,y3 =Ly, = 3,Q1 =1=p, = Q3,Q4 = ,19 = 10,192 = 20,193 = 4,19 =1,
Vi = 151,\12 = 152, V3 = 153,\/4 = %,pl Py = 19,,03 Py = 11 Note that |F(r,u(r))l < 7 + 1 = L and
|F(t,u) — F(t,v)| < L|u—v|, by assuming L = }L. Since Lc < 1, so by Theorem 3.1, it has a unique

solution.
4. Hyers-Ulam stability

In this section we discuss the criteria for Ulam stability of the problems (1.2)—(1.3). The following
remarks and definitions will be crucial for proof of our result.
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Remark 4.1. From Lemma 2.1 we can write the solution u € H of fractional BVP (1.2)—(1.3) as;

T
u(t) = f G(t,r)F (r,u(r)dr, “4.1)

where
a<{<vy <T,

and

(=" (0 e
['(m) ; (’87/3 F(m+1) Ton— p+1)77(l)) (f_ r) P
_% (187/2(1"(;3 + T(m— ,,)U(f)) (T-rmrl a<r<t

&=’ -
( 3F(m+l) F(m p+1)77(t)) (g - I’) P

T-r m—
(,3 2<F(m§ . p)n(t)) (T — rym—r-!

G0 = d E T o) rs 6
4 TP —
. ( Y2 Tm) r(m_p)n(t)) (T —rm?

+% Lg (ﬁy4ﬁl (‘;i(n:; r(’n—p)pl (t)) v, = r)m_p_l, [<rsy

% ('872(&:;; Tm-— p)n(t)) (T -r"r" v<r<T.

~

—_

Moreover
m Tm

= O A T
2_
*2% 2, %74ﬂ‘r<m) T T -p™"

|G(t,7r)| <

(9l + max {03,0,}
Fm+1| [Tm-p+1)

= A, (4.3)

where

n = = max In ()] . 4.4)

Definition 4.2. The fractional BVP (1.2)—(1.3) is said to be Hyers-Ulam stable if there exist constants
A > 0, such that for each € > 0 and for each solution v € H of

“D"v(t) —F (t,v(1))| <€, t € a,T] 4.5
there exists a solution u € H of (1.2)—(1.3) such that
V() —u() < A€, t€la,T]. 4.6)

Remark 4.3. A function v € H is a solution of inequality (4.5) if and only if there exists a function
w € H such that
D0w@l <etelaT],
@) Dvt)y=Ft,v®)+w@®),t€la,T].

In the following result we obtain the criteria under which the problem (1.2)—(1.3) is Hyers-Ulam
stable.
Theorem 4.4. Suppose F : [a.T] X R — R is continuous and satisfying (H1). If 1 # LA (T — a), then
the problems (1.2)—(1.3) is Hyers-Ulam stable.
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Proof. Let F : [a.T] X R — R be continuous and satisfying (H1). Let u € H be any solution of
inequality (4.5) then by Remark 4.3, we have

‘D"u(t) =F(t,u(®) +w (), forallt € [a,T].

Using Remark 4.1, we can write

T T
u(t) = f G, r)F(r,u(r)dr+ f G, rw(r)dr,

which gives

T
u(t) — f Gt,r)F(r,u()dr| < AT —a)e, 4.7

where G(t,r) and A are defined in (4.2) and (4.3). Now let v € H be a unique solution of fractional
BVP (1.2)-(1.3), consider

T
[ (£) — v (7)) u(t) — f G, r)F(r,v(r)dr

IA

T
u(t) — f G, r)F (r,u(r))dr

+

T T
f G, r)F (ryu(r))dr — f G, n)F(r,v(r)dr

from (4.7) we have

T T
u@—v(@®| < AT —a)e+ f G, r)F(r,u(r))dr— f G, r)F (r,v(r)dr

using (H1) we get
lu—Vv||< AT —a)e+ LA(T —a)l||lu—v||

which further implies

llu = VI < Ae,

where A = 1_’2(/((}”_)@. Since 1 # LA (T — a), therefore the problems (1.2)—(1.3) is Hyers-Ulam stable.

This proves the theorem. O
Remark 4.5. In Example 3.3, the system is Hyers-Ulam stable.
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