Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Orbital stability of periodic solutions of an impulsive system with a linear continuous-time part

Faculty of Mathematics and Mechanics, St. Petersburg State University, Universitetsky av. 28, Stary Peterhof, 198504, St. Petersburg, Russia

Special Issues: Initial and Boundary Value Problems for Differential Equations

An impulsive system with a linear continuous-time part and a nonlinear discrete-time part is considered. A criterion for exponential orbital stability of its periodic solutions is obtained. The proof is based on linearization by the first approximation of an auxiliary discrete-time system. The formulation of the criterion depends significantly on a number of impulses per period of the solution. The paper provides a mathematical rationale for some results previously examined in mathematical biology by computer simulations.
  Figure/Table
  Supplementary
  Article Metrics

References

1. A. N. Churilov, A. Medvedev, A. I. Shepeljavyi, Mathematical model of non-basal testosterone regulation in the male by pulse modulated feedback, Automatica, 45 (2009), 78-85.    

2. A. N. Churilov, A. Medvedev, A. I. Shepeljavyi, State observer for continuous oscillating systems under intrinsic pulse-modulated feedback, Automatica, 48 (2012), 1005-1224.    

3. A. N. Churilov, A. Medvedev, An impulse-to-impulse discrete-time mapping for a time-delay impulsive system, Automatica, 50 (2014), 2187-2190.    

4. A. N. Churilov, A. Medvedev, P. Mattsson, Periodical solutions in a pulse-modulated model of endocrine regulation with time-delay, IEEE Trans. Automat. Contr, 59 (2014), 728-733.    

5. Z. T. Zhusubaliyev, E. Mosekilde, A. N. Churilov, et al. Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay, Eur. Phys. J. Special Topics, 224 (2015), 1519-1539.    

6. A. N. Churilov, A. Medvedev, Discrete-time map for an impulsive Goodwin oscillator with a distributed delay, Math. Control Signals Syst, 28 (2016), 1-22.    

7. A. N. Churilov, A. Medvedev, Z. T. Zhusubaliyev, Impulsive Goodwin oscillator with large delay: Periodic oscillations, bistability, and attractors, Nonlin. Anal. Hybrid Syst., 21 (2016), 171-183.    

8. A. Churilov, A. Medvedev, Z. Zhusubaliyev, Discrete-time mapping for an impulsive Goodwin oscillator with three delays, Intern. J. Bifurc. Chaos, 27 (2017), 1750182.

9. A. Medvedev, A. V. Proskurnikov. Z. T. Zhusubaliyev, Mathematical modeling of endocrine regulation subject to circadian rhythm, Ann. Rev. Contr., 46 (2018), 148-164.    

10. H. Taghvafard, A. Medvedev, A. V. Proskurnikov, et al. Impulsive model of endocrine regulation with a local continuous feedback, Math. Biosci., 310 (2019), 128-135.    

11. V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, Singapore: World Scientific, 1989.

12. D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, UK: Longman Harlow, 1993.

13. A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, Singapore: World Scientific, 1995.

14. W. M. Haddad, V. Chellaboina, S. G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control, Princeton and Oxford: Princeton University Press, 2006.

15. M. Benchohra, J. Henderson, S. Ntouyas, Impulsive Differential Equations and Inclusions, New York: Hindawi Publishing Corporation, 2006.

16. I. Stamova, Stability Analysis of Impulsive Functional Differential Equations, Berlin: Walter de Gruyter, 2009.

17. I. Stamova and G. Stamov, Applied Impulsive Mathematical Models, Berlin: Springer, 2016.

18. A. K. Gelig, A. N. Churilov, Stability and Oscillations of Nonlinear Pulse-Modulated Systems, Boston: Birkhäuser, 1998.

19. R. Bellman, Stability Theory of Differential Equations, New York: McGraw-Hill, 1953.

20. A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, New York: Academic Press, 1966.

21. P. S. Simeonov, D. D. Bainov, Orbital stability of the periodic solutions of autonomous systems with impulse effect, Int. J. Syst. Sci., 19 (1988), 2561-2585.    

22. P. S. Simeonov, D. D. Bainov, Orbital stability of the periodic solutions of autonomous systems with impulse effect, Publ. RIMS, Kyoto Univ., 25 (1989), 321-346.    

23. J. W. Grizzle, G. Abba, F. Plestan, Asymptotically stable walking for biped robots: Analysis via systems with impulse effects, IEEE Trans. Autom. Contr., 46 (2001), 51-64.    

24. S. G. Nersesov, V. Chellaboina, W. M. Haddad, A generalization of Poincaré's theorem to hybrid and impulsive dynamical systems, Proc. Amer. Contr. Conf., 2 (2002), 1240-1245.

25. K. G. Dishlieva, A. B. Dishliev, V. I. Radeva, Orbital Hausdorff dependence on impulsive differential equations, Int. J. Diff. Equat. Appl., 13 (2014), 145-163.

26. K. G. Dishlieva, Orbital Hausdorff stability of the solutions of differential equations with variable structure and impulses, Amer. Rev. Math. Statist., 3 (2015), 70-87.

27. K. G. Dishlieva, Orbital Euclidean stability of the solutions of impulsive equations on the impulsive moments, Pure Appl. Math. J., 4 (2015), 1-8.

28. O. Vejvoda, On the existence and stability of the periodic solution of the second kind of a certain mechanical system, Czechoslovak Math. J., 9 (1959), 390-415.

29. G. A. Leonov, D. V. Ponomarenko, V. B. Smirnova, Local instability and localization of attractors. From stochastic generator to Chua's systems, Acta Appl. Math., 40 (1995), 179-243.    

30. A. Halanay, D. Wexler, Teoria Calitativǎ a Sistemelor cu Impulsuri, Bucureşti: Ed. Acad. R. S. România, 1968.

31. A. Halanay, V. Rǎsvan, Stability and Stable Oscillations in Discrete Time Systems, Boca Raton: CRC Press, 2000.

32. A. N. Michel, K. Wang, B. Hu, Qualitative Theory of Dynamical Systems: The Role of Stability Preserving Mappings, 2 Eds., New York: Marcel Dekker, 2001.

33. R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge: Cambridge University Press, 1990.

34. L. Glass, M. C. Mackey, From Clocks to Chaos: The Rhythms of Life, Princeton: Princeton University Press, 1988.

35. L. Glass, Synchronization and rhythmic processes in physiology, Nature, 410 (2001), 277-284.    

36. A. Goldbeter, Computational approaches to cellular rhythms, Nature, 420 (2002), 238-245.    

37. L. Glass, Dynamical disease: Challenges for nonlinear dynamics and medicine, Chaos, 25 (2015), 097603.

38. J. J. Walker, J. R. Terry, K. Tsaneva-Atanasova, et al. Encoding and decoding mechanisms of pulsatile hormone secretion, J. Neuroendocrinol., 22 (2009), 1226-1238.

39. E. Zavala, K. C. A. Wedgwood, M. Voliotis, et al. Mathematical modelling of endocrine systems, Trends Endocrin. Metab., 30 (2019), 244-257.    

40. N. Bagheri, S. R. Taylor, K. Meeker, et al. Synchrony and entrainment properties of robust circadian oscillators, J. R. Soc. Interface, 5 (2008), S17-S28.

41. J. D. Murray, Mathematical Biology, I: An Introduction, 3 Eds., New York: Springer, 2002.

42. L. S. Farhy, J. D. Veldhuis, Joint pituitary-hypothalamic and intrahypothalamic autofeedback construct of pulsatile growth hormone secretion, Am. J. Physiol. Regul. Integr. Comp. Physiol., 285 (2003), R1240-R1249.

43. Z. T. Zhusubaliyev, A. N. Churilov, A. Medvedev, Bifurcation phenomena in an impulsive model of non-basal testosterone regulation, Chaos, 22 (2012), 013121.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved