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1. Introduction

The system considered in this paper is a generalization of a hormonal regulation model introduced
in [1] and later developed in a number of publications (see, among others, [2–10]). This system belongs
to the class of impulsive differential equations widely addressed in mathematical literature (see, e. g.,
[11–17]). An impulsive release of some hormones results from the fact that it is controlled by neurons
of the brain. The amplitudes and frequencies of this release are governed by other hormones secreted
in certain organs or tissues. The working regimes of such a hormonal system are periodic oscillations.

Following [14], an impulsive system can be seen as a special class of hybrid systems that includes
both continuous-time and discrete-time dynamics. We are interested in the case when the times
between impulses are variable and depend on the state vector and the previous impulse moments. In
electrical engineering and biology such systems are called pulse-frequency modulated [18].

It is well known, that the conventional stability concept [19, 20] is unsuitable for systems with
impulses, since their solutions are discontinuous in time and even for close initial values, solutions
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may differ significantly in some vicinities of jumping times. Definitions of stability of solutions taking
into account specifity of impulsive systems can be found, e. g., in [11,13,16]. An alternative approach
is an adoption of the orbital stability concept to impulsive systems, see [21–27].

In the present paper we provide a criterion for some kind of exponential orbital stability of periodical
solutions. The stability concept pursued here is different from that was addressed in previous works.
Its analogues for non-impulsive systems can be found in [28, 29].

When compared with [1], the result of this paper is novel in several aspects. Firstly, in [1] an
orbital stability was considered, and here we obtain a more powerful result that ensures some kind
of exponential orbital stability. Secondly, in [1] the statement on orbital stability was formulated,
however its proof was only sketched because of the lack of space. In the present paper we provide a
detailed and rigorous mathematical proof. Additionally, the system treated here is more general than
that in [1]. Thirdly, in most publications on impulsive systems the initial impulse moment is considered
fixed and common for all the solutions. However it is not suitable for some applications, e. g., when
we address synchronization problems [2]. In this paper we examine stability in the augmented phase
space including continuous-time and discrete-time coordinates.

The paper is organized as follows. Firstly, a special class of linear systems with a nonlinear
impulsive impact is described. Then a characterization of its periodic solutions with the help of an
auxiliary discrete-time system is given. We also prove some results on stability of discrete-time
systems. Based on these results, a criterion for exponential orbital stability of periodic solutions of the
initial impulsive system is established. Finally, a numerical example is provided.

2. Impulsive system

2.1. System description

Consider a system with impulses that describes dynamics of an unknown p-dimensional vector
function x(t) and a discrete-time sequence {tn}

∞
n=0:

ẋ = Ax(t), tn < t < tn+1, (2.1)
x(t+

n ) − x(t−n ) = Λn, (2.2)
tn+1 = tn + Tn, (2.3)
Tn = Φ(x(t−n )), Λn = F(x(t−n )), (2.4)

n ≥ 0, t ≥ t0. Here A is a nonzero constant p × p matrix, tn is an increasing scalar sequence and Λn

is a sequence of p-dimensional vectors. The notation x(t−), x(t+) is used for left-sided and right-sided
limits of the function x(·) at the point t. The system’s solutions have jumps Λn at times tn, and Tn is
the duration of the interval between consecutive jumping times tn, tn+1. The sequences Tn and Λn are
defined by (2.4), where Φ(·), F(·) are nonlinear continuous maps, Φ : Rp 7→ R, F : Rp 7→ Rp.

Assume that Φ(·) has finite lower and upper bounds:

0 < Φ1 ≤ Φ(x) ≤ Φ2 (2.5)

for all x ∈ Rp, where Φ1, Φ2 are some constants. Additionally, suppose that Φ(·), F(·) are Lipschitz
with some Lipschitz constants LΦ, LF , respectively:

|Φ(x) − Φ(y)| ≤ LΦ‖x − y‖, ‖F(x) − F(y)‖ ≤ LF‖x − y‖ for all x, y. (2.6)
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Here ‖ · ‖ is the Euclidean vector norm.
The state space systems (2.1)–(2.4) is (p + 1)-dimensional, since it encompasses dynamics not only

of x(t), but also of tn. Initial values for its solutions are given by points (t0, x(t−0 )).

2.2. Existence and uniqueness of solutions

Integrating (2.1) and taking (2.2) into account, we obtain

x(t) = eA(t−tn)(x(t−n ) + Λn), tn < t < tn+1. (2.7)

Hence, if we know a solution at a point tn, namely the pair (tn, x(t−n )), we can uniquely extend x(t) to
the whole interval (tn, tn+1) and thus obtain the pair (tn+1, x(t−n+1)). Moreover, from (2.5) it follows that
tn+1 − tn ≥ Φ1 > 0, so the sequence {tn}, n = 0, 1, . . . is strictly increasing, has no accumulation points,
and tn → +∞ as n→ ∞.

Thus we conclude that for any initial value (t0, x(t−0 )) there exists a unique solution (tn, x(t)) of
(2.1)–(2.4) for t ∈ [t0, +∞) and n = 0, 1, 2, . . ..

2.3. Reduction to a discrete-time system

For brevity, let us introduce notation xn = x(t−n ). From (2.7) it follows that for any solution of
(2.1)–(2.4) and for all n ≥ 0

xn+1 = eATn(xn + Λn) (2.8)

(see, e. g., [30]).
Then any solution (tn, x(t)) of (2.1)–(2.4) obeys a system of discrete-time (difference) equations

xn+1 = eAΦ(xn)(xn + F(xn)), (2.9)
tn+1 = tn + Φ(xn), n = 0, 1, . . . . (2.10)

Notice that (2.10) does not influence (2.9), so the dynamics of (2.9) can be studied independently
of (2.10). Discrete-time system (2.9) is p-dimensional, while the augmented system (2.9), (2.10) is
(p + 1)-dimensional. Further (2.9), (2.10) will be called the discrete-time system related to (2.1)–(2.4).

Observe that if some sequences {xn}, {tn} satisfy (2.9), (2.10), then there exists a unique solution
(tn, x(t)) of (2.1)–(2.4) with x(t−n ) = xn, n = 0, 1, . . . . Indeed, between the sampling times tn, tn+1 the
function x(t) can be uniquely recovered as

x(t) = eA(t−tn)(xn + Λn) or x(t) = eA(t−tn+1)xn+1.

Thus there is one-to-one correspondence between solutions of discrete-time systems (2.9), (2.10) and
of impulsive systems (2.1)–(2.4).

3. Periodic solutions

3.1. Periodic solutions of the discrete-time system

Let us inroduce a map Q : Rp 7→ Rp,

Q(x) = eAΦ(x)(x + F(x)). (3.1)
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Then (2.9) can be rewritten as
xn+1 = Q(xn). (3.2)

Consider the discrete-time equation (2.9), where the map Q(·) is defined by (3.1). Solutions of (2.9)
are infinite sequences {xn}

∞
n=0 = {x0, . . . , xk, . . .}.

For an integer k ≥ 1 consider the kth iteration of the map Q:

Q(k)(x) = Q(Q(. . . (Q(︸        ︷︷        ︸
k

x)) . . .)).

Then any solution of (2.9) can be found as xn = Q(n)(x0), n ≥ 1, where x0 is an initial value.
A solution {xn} of (2.9) is called 1-periodic or 1-cycle, if xn ≡ x0 for all n ≥ 0. The initial value x0

of a 1-cycle is a fixed point of the map Q, i. e., Q(x0) = x0.
A solution {xn} of (2.9) is called m-periodic (m > 1) or m-cycle, if xn+m = xn for all n ≥ 0, and the

vectors x0, . . . , xm−1 are all different. Obviously, the initial value x0 of an m-cycle is a fixed point of the
mth iterate, but not a fixed point of lower iterates:

Q(m)(x0) = x0, Q(k)(x0) , x0 for 1 ≤ k < m. (3.3)

Let {xn, tn} be a solution of discrete-time systems (2.9), (2.10), where the sequence {xn} is m-periodic
(m ≥ 1). Then

xn+m = xn, tn+m = tn + T for n ≥ 0 (3.4)

with
T = Φ(x0) + . . . + Φ(xm−1). (3.5)

The second equality (3.4) follows from periodicity of xn and the relationships

tn+m = tn + Φ(xn) + . . . + Φ(xn+m−1) = tn + Φ(x0) + . . . + Φ(xm−1) = tn + T.

3.2. Periodic solutions of the continuous-time impulsive system

Let T be some positive real number. The solution (tn, x(t)) of impulsive systems (2.1)–(2.4) will be
called T-periodic if the function x(t) is T -periodic for t ≥ t0 with the least period T .

Theorem 1. Establish a correspondence between periodic solutions (tn, x(t)) of impulsive systems
(2.1)–(2.4) and periodic solutions {xn} of discrete-time system (2.9).

(i) Let a solution {xn} of (2.9) be an m-cycle with some integer m ≥ 1. Then the solution (x(t), tn) of
the systems (2.1)–(2.4) with an arbitrary initial value t0 and the initial condition x(t−0 ) = x0 is periodic
with the least period T defined by (3.5).

(ii) Let (tn, x(t)) be a T-periodic soluton of (2.1)–(2.4) with some initial values t0 and x(t−0 ) = x0.
Take the solution {xn} of (2.9) with the same initial value x0. Then there exists an integer m ≥ 1 such
that {xn} is an m-cycle and (3.5) is satisfied.

Proof. Consider a solution of (2.1)–(2.4) with the initial condition x(t−0 ) = x0. Then x(t−n ) satisfies (2.9)
and Tn, Λn are defined by (2.4). Thus

x(t−n ) = xn, Tn = Φ(xn), Λn = F(xn) for all n ≥ 0. (3.6)

AIMS Mathematics Volume 5, Issue 1, 96–110.



100

Since {xn} is an m-cycle, we have

x(t−n+m) = x(t−n ), Tn+m = Tn, Λn+m = Λn for all n ≥ 0. (3.7)

Let tn < t < tn+1 for some n ≥ 0. From (3.4) we obtain tn+m < t + T < tn+m+1, hence

x(t) = eA(t−tn)(xn + Λn), x(t + T ) = eA(t+T−tn+m)(xn+m + Λn+m).

This evidently implies x(t + T ) = x(t) for t+
n ≤ t < tn+1. Since n is taken arbitrarily, x(t) is T -periodic.

Let us prove that T is the least period of x(t). Assume that there exists some number 0 < T̃ < T
such that x(t + T̃ ) = x(t) for t ≥ t−0 . Then

x(t−0 + T̃ ) = x(t−0 ) = x0, x(t+
0 + T̃ ) = x(t+

0 ) = x0 + Λ0.

Thus t0 + T̃ is a jumping point of the vector function x(t). Since x(t) has no jumping points but
t0, t1, t2, . . ., there exists some k ≥ 1 such that t0 + T̃ = tk. Hence xk = x0 and k < m that contradicts
the supposition that m is the least period for the sequence {xn}. Thus statement (i) is proved.

Consider a T -periodic soluton (tn, x(t)) of (2.1)–(2.4) with some initial values t0 and x(t−0 ) = x0.
then the sequences {xn}, {tn}, where xn = x(t−n ), satisfy (2.9), (2.10) and Tn = Φ(xn), Λn = F(xn).

As it was shown above, then t0 + T is a jumping point and there exists some m ≥ 1 such that
t0 + T = tm. Here

T = tm − t0 = (tm − tm−1) + . . . + (t1 − t0) = Tm−1 + . . . + T0,

so (3.5) holds. Moreover, due to T -periodicity of x(t) we have

xm = x(t−m) = x(t−0 + T ) = x(t−0 ) = x0.

Hence Q(m)(x0) = x0 and the sequence {xn} is m-periodic.
Let us prove that m is the least period of {xn}. If there exists some integer k such that 0 < k < m and

{xn} is k-periodic, then from the first part of Theorem 1 we obtain that the corresponding solution of
(2.1)–(2.4) has a period T̃ = T0 + . . . + Tk−1 and T̃ < T . This contradicts the supposition that T is the
least period. �

In particular, Theorem 1 claims that for every periodic solution of a least period T there exists an
integer m such that any interval [tn, tn + T ) contains exactly m jumping times. Such a solution will also
be called an m-cycle.

4. General statements on stability of discrete-time systems

We will follow the definitions from [31]. Consider a discrete-time system

xn+1 = Q(xn), n = 0, 1, . . . , (4.1)

where xn is a p-dimentional vector and Q is a continuous map, Q : Rp 7→ Rp. (Here we do not require
that Q(·) be of form (3.1).)

Let us take a solution {xn}
∞
n=0 of (4.1) with some initial value x0.
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The solution {xn}
∞
n=0 is called stable if for any given ε > 0 there exists δ > 0 such that all solutions

{x̃n}
∞
n=0 of (4.1) with ‖x0 − x̃0‖ < δ are such that ‖xn − x̃n‖ < ε for all n ≥ 0.

A solution {x̃n}
∞
n=0 with perturbed initial data will be called a perturbed solution.

The solution {xn}
∞
n=0 is called exponentially stable if there exist numbers δ > 0, M ≥ 1 and 0 < r < 1

such that all solutions {x̃n}
∞
n=0 of (4.1) with ‖x0 − x̃0‖ < δ satisfy

‖xn − x̃n‖ ≤ Mrn‖x0 − x̃0‖ (4.2)

for all n ≥ 0.
We will need the following auxiliary statement on stability by the first approximation (see

Theorem 2.10 [31] for the proof).

Lemma 1. Consider system (4.1) and let its solution {xn}
∞
n=0 be a 1-cycle, i. e., xn ≡ x0 and x0 is a fixed

point of the map Q(·): Q(x0) = x0. Assume that Q(·) is continuously differentiable in a neighborhood
of x0 and its Jacobian matrix J(x0) is Schur stable [32], i. e., all its eigenvalues are within the unit
circle of the complex plane. Then this 1-cycle is exponentially stable.

Let us extend the previous statement to the case of an m-cycle with m > 1. Again, let J(x) be the
Jacobian matrix of Q(·) at a point x.

Lemma 2. Consider a solution {xn} that is an m-cycle, m > 1. Assume that the vector valued function
Q(·) is continuously differentiable in some neighborhoods of the points x0, . . . xm−1. If the matrix
product of Jacobian matrices J(xm−1) · · · J(x0) is Schur stable, then the m-cycle is exponentially stable.

Proof. For brevity, denote Jn = J(xn). Since the sequence xn is m-periodic, Jn is also m-periodic and
Jn+m = Jn for all n ≥ 0.

Consider the m-cycle {xn}
∞
n=0 and a perturbed solution {x̃n}

∞
n=0. Define the sequences yn = xmn and

ỹn = x̃mn, n = 0, 1, . . .. Obviously yn and ỹn satisfy the discrete-time equations

yn+1 = Q(m)(yn), (4.3)
ỹn+1 = Q(m)(ỹn), n ≥ 0, (4.4)

with the initial values y0 = x0, ỹ0 = x̃0. Here Q(m) is the mth iteration of the map Q.
As it was mentioned previously, an initial value x0 of an m-cycle is a fixed point of the iteration

Q(m), i. e., Q(m)(x0) = x0. By the chain rule, the Jacobian matrix of Q(m) at the point x0 is the product
Jm−1 · · · J0. By the supposition, this product is Schur stable. Thus {yn} is a 1-cycle of (4.3) with a Schur
stable Jacobian matrix. From Lemma 1, this 1-cycle is exponentially stable. Hence there exist numbers
M0 ≥ 1, 0 < r0 < 1 and h0 > 0 such that if ‖x0 − x̃0‖ < h0 then ‖xnm − x̃nm‖ ≤ M0rn

0‖x0 − x̃0‖ for all
n ≥ 0.

It is easily seen that for any two square matrices A1, A2 of the same sizes the products A1A2 and
A2A1 are simultaneously Schur stable or unstable. If the product Jm−1 · · · J0 is Schur stable, from the
previous statement we get that any matrix product obtained from Jm−1 · · · J0 by a cyclic permutation
will be also Schur stable. Then from m-periodicity of Jn it follows that the matrix product Jn+m−1 · · · Jn

is Schur stable for any n ≥ 0.
Let us fix some integer s, 1 ≤ s < m, and define the sequences yn = xmn+s and ỹn = x̃mn+s,

n = 0, 1, . . .. They satisfy the same equations (4.3), (4.4), however with the initial data y0 = xs, ỹ0 = x̃s.
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Moreover, yn is a 1-cycle of (4.3). Since the product Jm+s−1 · · · Js is Schur stable, arguing as above we
conclude that there exist there exist Ms ≥ 1, 0 < rs < 1 and hs > 0 such that if ‖xs − x̃s‖ < hs then
‖xnm+s − x̃nm+s‖ ≤ Msrn

s‖xs − x̃s‖ for all n ≥ 0. Define

M = max
0≤s≤m−1

Ms, r = max
0≤s≤m−1

rs, h = min
0≤s≤m−1

hs.

Thus, if max0≤s≤m−1 ‖xs − x̃s‖ < h, then

‖xn − x̃n‖ ≤ Mrn max
0≤s≤m−1

‖xs − x̃s‖ (4.5)

for all n ≥ 0.
Continuous differentiability implies that Q(·) is locally Lipschitz. Then for every xk, 0 ≤ k ≤ m− 1,

there exist a sufficiently small number δk > and a number Lk > 0 such that if ‖x̃k − xk‖ < δk, then

‖x̃k+1 − xk+1‖ = ‖Q(x̃k) − Q(xk)‖ ≤ Lk‖x̃k − xk‖.

Let us take
δ = min

0≤k≤m−1
δk, L = max

0≤k≤m−1
L0 · · · Lk.

Hence if ‖x̃0 − x0‖ < δ then
max

0≤k≤m−1
‖x̃k − xk‖ ≤ L‖x̃0 − x0‖. (4.6)

Combining (4.5) and (4.6) we obtain that if ‖x̃0 − x0‖ < min{δ, h} then

‖xn − x̃n‖ ≤ MLrn‖x0 − x̃0‖, n ≥ 0.

Thus we arrive at the exponential stability of the m-cycle {xn}
∞
n=0. �

5. Stability of cycles of the augmented discrete-time system

Augment discrete-time system (4.1) with system (2.10). This results in system

xn+1 = Q(xn), (5.1)
tn+1 = tn + Φ(xn). (5.2)

that is considered in the (p + 1)-dimensional space Rp+1. As in the previous section, the function Q(·)
may be rather general, not only of form (3.1).

Equation (5.1) (a reduced system) can be treated independently of (5.2). If Q(·) is continuously
differentiable, Lemmas 1, 2 provide conditions for exponential stability of periodic solutions of (5.1).

However, if we consider augmented system (5.1), (5.2) it is easily seen that its solutions cannot be
exponentially stable. Indeed, let {tn, xn} and {t̃n, x̃n} be two solutions of (5.1), (5.2) such that x̃0 = x0,
but t̃0 , t0. Then t̃n − tn ≡ t̃0 − t0 and t̃n − tn does not vanish as n → ∞. Nevertheless, solutions of the
augmented system can be just stable.

Theorem 2. Assume that the function Φ(·) is Lipschitz with some Lipschitz constant LΦ. Suppose
that {tn, xn}

∞
n=0 is a solution of systems (5.1), (5.2) such that {xn} is an m-cycle of (5.1). Let {xn} be

exponentially stable, i. e., there exist numbers δ > 0, M ≥ 1 and 0 < r < 1 such that all solutions {x̃n}

of (5.1) with ‖x0 − x̃0‖ < δ satisfy (4.2) for all n ≥ 0. Then inequality ‖x0 − x̃0‖ < δ also implies

|tn − t̃n| ≤ |t0 − t̃0| +
LΦM
1 − r

‖x0 − x̃0‖. (5.3)
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Proof. From (2.6) we get
|Φ(xk) − Φ(x̃k)| ≤ LΦ‖xk − x̃k‖

for all k ≥ 0. Then ‖x0 − x̃0‖ < δ implies

|Φ(xk) − Φ(x̃k)| ≤ LΦMrk‖x0 − x̃0‖ for all k ≥ 0. (5.4)

We have

tn = t0 +

n−1∑
k=0

(tk+1 − tk) = t0 +

n−1∑
k=0

Φ(xk), t̃n = t̃0 +

n−1∑
k=0

Φ(x̃k),

hence

tn − t̃n = t0 − t̃0 +

n−1∑
k=0

(
Φ(xk) − Φ(x̃k)

)
. (5.5)

If ‖x0 − x̃0‖ < δ then from (5.4), (5.5) we come to (5.3). �

Obviously, (4.2) and (5.3) imply (non-exponential) stability of {tn, xn}
∞
n=0 considered in Rp+1.

6. Orbital stability of periodic solutions of the impulsive system

In this section we will introduce a “hybrid” approach to exponential orbital stability for periodic
solutions of (2.1)–(2.4) (for a non-impulsive case see [28,29]). This approach is slightly different from
the “geometrical” one [21–24, 26].

As previously, let ‖ · ‖ denote the Euclidean norm for vectors and its induced (spectral) norm for
matrices [33]. Let {tn, x(t)} be a periodic solution of impulsive system (2.1)–(2.4) defined for t ≥ t0,
n = 0, 1, . . .. Assume that O is a periodic orbit of x(t), namely the set

O = {x ∈ Rp : (∃t) t ≥ t−0 ∧ x = x(t) }.

For any point x ∈ Rp define the distance between x and O as

dist(x,O) = inf
ξ∈O
‖x − ξ‖. (6.1)

Assume that the functions Φ(·), F(·) are continuously differentiable and Lipschitz, satisfying (2.6).
Let J(x) be the Jacobian matrix of the right-hand side of (3.1) at a point x and estimates (2.5) be valid.
For brevity, we will use notation xn = x(t−n ), x̃n = x(t̃−n ), n = 0, 1, . . . for solutions {tn, x(t)}, {t̃n, x̃(t)} of
(2.1)–(2.4).

Theorem 3. Consider a solution {tn, x(t)} of (2.1)–(2.4) with initial values {t0, x(t−0 ) = x0} that is an
m-cycle for some m ≥ 1. Let the matrix product J(xm−1) · · · J(x0) be Schur stable. Then their exist
constant numbers C0 > 0, C > 0, 0 < r < 1, ∆0 > 0, ∆ > 0 such that for any other solution {t̃n, x̃(t)} of
(2.1)–(2.4) with initial values {t̃0, x̃(t̃−0 ) = x̃0} satisfying inequalities

|t̃0 − t0| < ∆0, ‖x̃0 − x0‖ < ∆ (6.2)

it follows that

|t̃n − tn| ≤ |t̃0 − t0| + C0‖x̃0 − x0‖, (6.3)
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sup
t∈Dn

dist(x̃(t),O) ≤ Crn‖x̃0 − x0‖, Dn = [t̃n, t̃n+1), (6.4)

for all n ≥ 0.

Proof. Consider discrete-time systems (2.9), (2.10) related to (2.1)–(2.4). From Lemmas 1, 2 we
conclude that the sequence {xn} is an exponentially stable solution of (2.9).

Thus there exist numbers δ > 0, M ≥ 1 and 0 < r < 1 such that all solutions {x̃n} of (2.9) with
‖x0 − x̃0‖ < δ satisfy (4.2) for all n ≥ 0. Then from Theorem 2 we get that inequality (6.3) is valid with

C0 =
LΦM
1 − r

.

Let us choose ∆, ∆0 so small that

∆ ≤ δ, ∆0 + C0∆ < 1
2 Φ1. (6.5)

If inequalities (6.2) are valid, the second inequality (6.5) implies 2|t̃n − tn| ≤ Φ1 for all n ≥ 0. It follows

tn+1 − tn > (t̃n+1 − tn+1) + (tn − t̃n) (6.6)

for all n ≥ 0. Inequality (6.6) can be also rewritten as

t̃n+1 + tn − tn+1 < tn+1 − tn + t̃n, (6.7)

which implies
(t̃n, t̃n+1) ⊂ (t̃n, tn+1 − tn + t̃n) ∪ (t̃n+1 + tn − tn+1, t̃n+1). (6.8)

Let n be an arbitrarily integer, n ≥ 0 and t is a number, t̃n < t < t̃n+1. The following two cases will
be considered.

(i) Firstly, let t̃n < t < tn+1 − tn + t̃n, which follows

tn < t + tn − t̃n < tn+1.

Thus
x̃(t) = eA(t−t̃n)(x̃n + F(x̃n)), x(t + tn − t̃n) = eA(t−t̃n)(xn + F(xn))

and

‖x̃(t) − x(t + tn − t̃n)‖ ≤ e‖A‖ |t−t̃n |(‖x̃n − xn)‖ + ‖F(x̃n) − F(xn)‖
)
≤ e‖A‖Φ2(1 + LF)‖xn − x̃n‖.

Hence
dist(x̃(t),O) ≤ e‖A‖Φ2(1 + LF)‖xn − x̃n‖. (6.9)

(ii) Let t̃n+1 + tn − tn+1 < t < t̃n+1. Then

tn < t + tn+1 − t̃n+1 < tn+1

and
x̃(t) = eA(t−t̃n+1) x̃n+1, x(t + tn+1 − t̃n+1) = eA(t−x̃n+1)xn+1.
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Hence
‖x̃(t) − x(t + tn+1 − t̃n+1)‖ ≤ e‖A‖Φ2‖x̃n+1 − xn+1‖

and
dist(x̃(t),O) ≤ e‖A‖Φ2‖xn+1 − x̃n+1‖. (6.10)

Since 0 < r < 1, estimates (6.9), (6.10) and (4.2) imply (6.4) with

C = M(1 + LF) e‖A‖Φ2 .

The proof is complete. �

Notice that (6.4) implies
dist(x̃(t),O)→ 0 as t → +∞.

7. Example

Periodic solutions of dynamical systems are of major interest for characterization of physiological
rhythms [34–37]. Many of these rhythms result from regulatory processes in biological organs. If
neurons of the brain are involved into this mechanism, the processes become impulsive (see, e. g., [38,
39]) and impulsive differential equations seem to be an adequate mathematical tool for describing them.
To reduce the model’s complexity and to elucidate regulatory mechanisms lying behind the model,
an ensemble of synchronized neurons is sometimes replaced by a consolidated impulsive oscillator
[38, 40]. This idea was realized in a endocrinological model proposed in [1].

Consider a mathematical model of a hypothalamus-driven hormonal system that is given by
impulsive equations [1]

ẋ1 = −αx1(t), tn < t < tn+1,

ẋ2 = −βx2(t) + g1x1(t),
ẋ3 = −γx3(t) + g2x2(t),

(7.1)

where x1(t), x2(t), x3(t) are scalar functions. Assume that the functions x2(t), x3(t) are continuous and
x1(t) has jumps at some times {tn}

∞
n=0 with

x1(t+
n ) − x1(t−n ) = F0(x3(tn)), tn+1 = tn + Φ0(x3(tn)). (7.2)

Here F0(·), Φ0(·) are Hill functions [41]

F0(y) = k1 + k2
(y/h)q

1 + (y/h)q , Φ0(y) = k3 +
k4

1 + (y/h)q , (7.3)

all the parameters k1, k2, k3, k4, h, q are positive, q is integer.
The biological sense of this model is the following. The function x1(t) describes the concentration

in the blood of a hypothalamic hormone, which is released impulsively from an ensemble of neurons
of hypothalamus. The function x2(t) is the concentrations of a pituitary hormone, and x3(t) is the
concentration of a hormone released from a controlled gland involved in regulation (such as liver,
pancreas or gonads). The coefficients α, β, γ characterize hormonal clearance rates, g1, g2 — secretion
rates. All the parameters are positive. The hypothalamic hormone stimulates the secretion of the

AIMS Mathematics Volume 5, Issue 1, 96–110.



106

pituitary hormone, the pituitary hormone stimulates the secretion of the controlled gland’s hormone.
The latter hormone inhibits the neural activity and the impulsive release of the hypothalamic
hormone — the impulses become sparser and their amplitudes decrease. (The inhibitory effect is seen
from the fact that F0(y) is decreasing and Φ0(y) is increasing for y > 0.) Thus the system attains a
dynamical equilibrium (homeostasis) that is characterized by some periodic oscillation.

Equations (7.1), (7.2) can be rewritten in the form of (2.1)–(2.4) with

A =


−α 0 0
g1 −β 0
0 g2 −γ

 , F(x) = BF0(Cx), Φ(x) = Φ0(Cx), B =


1
0
0

 , C = [0 0 1].

Thus the map Q(x) defined by (3.1) becomes

Q(x) = eAΦ0(Cx)(x + BF0(Cx))

with the Jacobian matrix

J(x) = eAΦ0(Cx)(I + F′0(Cx)BC
)

+ Φ′0(Cx)AQ(x)C.

(Here I is the identity matrix of order 3.) For a 1-cycle we have

x0 = Q(x0),

i. e., the initial value is a fixed point of the map Q(·), while for a 2-cycle we obtain two equations

x1 = Q(x0), x0 = Q(x1), x0 , x1. (7.4)

Let us consider a numerical example with

α = 0.006, β = 0.15, γ = 0.2. g1 = 2, g2 = 0.5.

Assume that
k1 = 60, k2 = 40, k3 = 3, k4 = 2, h = 2.7, q = 2 .

Then Eqs. (7.4) have a solution

x0 =


0.010128064492541
0.225030919954899
0.803444772662005

 , x1 =


0.108959325614995
2.413175576714000
8.568352684689630


and

J(x0) =


−0.000963588946497 −0.000000423878714 0.002413366480393
−0.021404733495303 −0.000009416058032 0.053609427810324
−0.076392335501037 −0.000033606710143 0.191329052639657

 ,
J(x1) =


−0.013853946141307 −0.000000297418098 0.002627810354290
−0.305492835883428 −0.000006558568407 0.057945744483940
−1.076639814491772 −0.000023115469451 0.204216552344842

 .
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The product of the Jacobian matrices J(x1)J(x0) is Schur stable with the eigenvalues

λ1 = 0.190356046517081, λ2 = 0.000000001118046, λ3 = 0.000000000000000.

Thus we arrived at an orbitally stable 2-cycle that is visualized in Figure 1. This type of dynamical
behavior is observed, e. g., in growth hormone’s profiles [42].
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Figure 1. Graphs of x1(t), x2(t), x3(t) corresponding to a stable 2-cycle for α = 0.006.
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Figure 2. A bifurcation diagram for varying α.

AIMS Mathematics Volume 5, Issue 1, 96–110.



108

When α varies in the range 0 < α < 0.12 we get a one-parametric bifurcation diagram shown in
Figure 2 [1]. For α < 0.045 and α > 0.11 we obtain an orbitally stable 1-cycle (the value Cx = Cx0),
while for 0.05 < α < 0.10 there exists an orbitally stable 2-cycle (the values Cx correspond to Cx0

and Cx1). The dashed line indicates an unstable 1-cycle. Thus when α increases, it passes through
two bifurcation points — for period doubling and for period halving. Such bubble-type diagrams seem
to be conventional for physiological oscillations (see [36]). In [43] it was demonstrated that with a
suitable choice of parameters, system (7.1)–(7.3) can possess m-cycles for higher values of m and
attain a deterministic chaos.

An understanding of hormonal rhythms opens the way to their administration. In review [37] this
problem was named one of the main challenges for the interaction between nonlinear dynamics and
medicine.

8. Conclusion

The paper considers a stability problem for an impulsive system with a linear dynamics between
impulses. The magnitudes and times of jumps are variable and depend on the system’s states. We
are interested in stable periodical solutions of these impulsive systems. The main characteristic of
such a solution is a number of jumps per period, which can be obtained by the study of fixed points
of auxiliary discrete-time maps. In this paper we propose a new notion of exponential orbital stability
that combines the known stability notions for impulsive and discrete-time systems. An easily verifiable
criterion for such a stability is provided.
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