Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Fractal approximation of chaos game representations using recurrent iterated function systems

Applied Math Department, University of Waterloo, Waterloo, Ontario, Canada

Special Issues: Applied and Industrial Mathematics in Canada and Worldwide

We demonstrate that chaos game representations of Cannabis sativa may be approximated by the chaos game approximation of a recurrent iterated function system attractor. Via numerical experiments, we then study the fractal scaling properties of both objects and apply a wavelet decomposition in order to investigate scale-invariant patterns. We show that the attractor of a recurrent iterated function system scales similarly to the chaos game representation and has a similar wavelet multiresolution analysis profile.
  Figure/Table
  Supplementary
  Article Metrics

Keywords chaos game representation; iterated function systems; multiresolution analysis; cannabis sativa

Citation: Martin Do Pham. Fractal approximation of chaos game representations using recurrent iterated function systems. AIMS Mathematics, 2019, 5(6): 1824-1840. doi: 10.3934/math.2019.6.1824

References

  • 1. J. S. Almeida, J. A. Carrico, A. Maretzek, et al. Analysis of genomic sequences by Chaos Game Representation, Bioinformatics, 17 (2001), 429-437.    
  • 2. M. F. Barnsley, Superfractals, 1st edition, Cambridge University Press, Cambridge, 2006.
  • 3. M. F. Barnsley, J. H. Elton and D. P. Hardin, Recurrent iterated function systems, Constr. Approx., 5 (1989), 3-31.    
  • 4. M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proceedings of the Royal Society of London A, 399 (1985), 243-275.    
  • 5. P. J. Deschavanne, A. Giron, J. Vilain, et al. Genomic signature: characterization and classification of species assessed by chaos game representation of sequences, Mol. Biol. Evol., 16 (1999), 1391-1399.    
  • 6. A. Fiser, G. E. Tusnady, I. Simon, Chaos game representation of protein structures, J. Mol. Graph. Model., 12 (1994), 302-304.    
  • 7. J. M. Gutierrez, M. A. Rodriguez, G. Abramson, Multifractal analysis of DNA sequences using a novel chaos-game representation, Physica A: Statistical Mechanics and its Applications, 300 (2001), 271-284.    
  • 8. J. C. Hart, Fractal Image Compression and Recurrent Iterated Function Systems, IEEE Comput. Graph., 16 (1996), 25-33.    
  • 9. H. J. Jeffrey, Chaos game representation of gene structure, Nucleic Acids Research, 18 (1990), 2163-2170.    
  • 10. H. Jia-Jing and F. Wei-Juan, Wavelet-based multifractal analysis of DNA sequences by using chaosgame representation, Chinese Phys. B, 19 (2010), 10205.
  • 11. L. Kari, K. A. Hill, A. S. Sayem, et al. Mapping the space of genomic signatures, PLOS ONE, 10 (2015), 119815.
  • 12. S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE transactions on pattern analysis and machine intelligence, 11 (1989), 674-693.    
  • 13. P. Mayukha, B. Satish, K. Srinivas, et al. Multifractal detrended cross-correlation analysis of coding and non-coding DNA sequences through chaos-game representation, Physica A: Statistical Mechanics and its Applications, 436 (2015), 596-603.    
  • 14. H. Oh, B. Seo, S. Lee, et al. Two complete chloroplast genome sequences of Cannabis sativa varieties, Mitochondrial DNA Part A: DNA mapping, sequencing, and analysis, 27 (2016), 2835-2837.
  • 15. D. Vergara, K. H. White, K. G. Keepers, et al. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus, Mitochondrial DNA Part A: DNA mapping, sequencing, and analysis, 27 (2016), 3793-3794.
  • 16. Y. Wang, K. Hill, S. Singh, et al. The spectrum of genomic signatures: from dinucleotides to chaos game representation, Gene, 346 (2005), 173-185.    
  • 17. J-Y. Yang, Z-L. Peng, Y. Zu-Guo, et al. Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation, J. Theor. Biol., 257 (2009), 618-626.    
  • 18. Y. Zu-Guo, V. Anh, K-S. Lau, Chaos game representation of protein sequences based on the detailed HP model and their multifractal and correlation analyses, J. Theor. Biol., 226 (2004), 341-348.    
  • 19. Y. Zu-Guo, X. Qian-Jun, S. Long, et al. Chaos game representation of functional protein sequences, and simulation and multifractal analysis of induced measures, Chinese Phys. B, 19 (2010), 68701.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved