
AIMS Mathematics, 2019, 4(3): 699713. doi: 10.3934/math.2019.3.699.
Research article Topical Section
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
One dynamical input reconstruction problem: tuning of solving algorithm via numerical experiments
1 Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoi str. 16, Yekaterinburg, 620990, Russia
2 Ural Federal University, Mira str. 19, Yekaterinburg, 620002, Russia
Received: , Accepted: , Published:
Topical Section: Mathematical modeling
Keywords: stochastic differential equation; dynamical input reconstruction; controlled model; tuning procedure; parallelization of calculations
Citation: Lidiya Melnikova, Valeriy Rozenberg. One dynamical input reconstruction problem: tuning of solving algorithm via numerical experiments. AIMS Mathematics, 2019, 4(3): 699713. doi: 10.3934/math.2019.3.699
References:
 1.R. W. Brockett and M. P. Mesarovich, The reproducivility of multivariable control systems, J. Math. Anal. Appl., 11 (1965), 548563.
 2.M. K. Sain and J. L. Massey, Invertibility of linear timeinvariant dynamical systems, IEEE T. Automat. Contr., 14 (1969), 141149.
 3.L. M. Silverman, Inversion of multivariable linear systems, IEEE T. Automat. Contr. 14 (1969), 270276.
 4.L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, Massachusetts: M.I.T. Press, 1983.
 5.J. P. Norton, An Introduction to Identification, London: Academic Press, 1986.
 6.Y. BarShalom and X. R. Li, Estimation and Tracking: Principles, Techniques, and Software, Boston: Artech House, 1993.
 7.A. N. Tikhonov and V. Ya. Arsenin, Solutions of IllPosed Problems, Moscow: Nauka, 1979; New York: Wiley, 1981.
 8.S. I. Kabanikhin, Inverse and IllPosed Problems, Berlin: De Gruyter, 2011.
 9.A. V. Kryazhimskii and Yu. S. Osipov, Modelling of a control in a dynamic system, Engrg. Cybernetics, 21 (1984), 3847.
 10.Y. S. Osipov and A. V. Kryazhimskii, Inverse Problems for Ordinary Differential Equations: Dynamical Solutions, London: Gordon & Breach, 1995.
 11.Y. S. Osipov, A. V. Kryazhimskii and V. I. Maksimov, Dynamic Recovery Methods for Inputs of Control Systems, Yekaterinburg: Izd. UrO RAN, 2011 [in Russian].
 12.V. I. Maksimov, Dynamical Inverse Problems of Distributed Systems, UtrechtBoston: VSP, 2002.
 13.N. N. Krasovskii, Control of a Dynamical System, Moscow: Nauka, 1985 [in Russian].
 14.N. N. Krasovskii and A. I. Subbotin, GameTheoretical Control Problems, New York: Springer, 1988.
 15.V. I. Maksimov and L. Pandolfi, On a dynamical identification of controls in nonlinear timelag systems, IMA J. Math. Control I., 19 (2002), 173184.
 16.M. S. Blizorukova and V. I. Maksimov, On a reconstruction algorithm for the trajectory and control in a delay system, P. Steklov I. Math., 280 (2013), 6679.
 17.V. I. Maksimov, Game control problem for a phase field equation, J. Optimiz. Theory App., 170 (2016), 294307.
 18.A. V. Kryazhimskii and Y. S. Osipov, On a stable positional recovery of control from measurements of a part of coordinates, in Some Problems of Control and Stability: Collection of Papers, Sverdlovsk: Izd. AN SSSR, 1989, 3347 [in Russian].
 19.Y. S. Osipov and A. V. Kryazhimskii, Positional modeling of a stochastic control in dynamical systems, in Stochastic Optimization: Proceedings of the International Conference, Kiev, Ukraine, 1984, Ser. Lecture Notes in Control and Information Sciences, 81, 696704, Berlin: Springer, 1986.
 20.V. L. Rozenberg, Dynamic restoration of the unknown function in the linear stochastic differential equation, Automat. Rem. Contr., 68 (2007), 19591969.
 21.V. L. Rozenberg, Reconstruction of randomdisturbance amplitude in linear stochastic equations from measurements of some of the coordinates, Comp. Math. Math. Phys., 56 (2016), 367375.
 22.V. L. Rozenberg, Dynamical input reconstruction problem for a quasilinear stochastic system, Proc. of the 17th IFAC Workshop on Control Applications of Optimization, CAO 2018, October~1519, 2018, Yekaterinburg, Russia, 727732. Available from: https://www.sciencedirect.com/journal/ifacpapersonline/vol/51/issue/32?page=2.
 23.B. ∅ksendal, Stochastic Differential Equations: An Introduction with Applications, Berlin: Springer, 1985; Moscow: Mir, 2003.
 24.V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, et al. Handbook on Probability Theory and Mathematical Statistics, Moscow: Nauka, 1985 [in Russian].
 25.F. L. Chernous'ko and V. B. Kolmanovskii, Optimal Control under Random Perturbation, Moscow: Nauka, 1978 [in Russian].
 26.G. N. Milshtein, Numerical Integration of Stochastic Differential Equations, Sverdlovsk: Izd. Ural. Gos. Univ., 1988 [in Russian].
 27.I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering, Massachusetts: AddisonWesley Reading, 1995.
 28.V. P. Gergel', Theory and Practice of Parallel Computing, Moscow: Binom, 2007 [in Russian].
Reader Comments
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *