Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Review on the modelling methods for the frost action characterization in cementitious materials at different scales

Institut de Recherche en Génie Civil et Mécanique, GeM-UMR 6183, Centrale Nantes-Université de Nantes-CNRS, 1 rue de la Noe, 44321 Nantes, France

Experimental studies on the frost action in concrete have showed a complex behaviour due to a high thermo-hydro-chemo-mechanical coupling. Many researchers have developed models to simulate freeze-thaw effects in cementitious materials. They showed the difficulties to take into account all phenomena: hydraulic, hydrostatic and osmotic pressures into pores; swelling and shrinkage; scaling, etc. Some researchers have firstly proposed descriptive models with the objective to reproduce the macroscopic observations, by calibrating the behaviour law and to show the influence of each parameters. Other researchers have proposed predictive models without calibration but with probabilistic methods. The different models show interesting results but are limited to few physical phenomena listed above. This paper presents a review on these different modelling methods and the limitations of each model. A short discussion is given to suggest a coupling method to consider all physical phenomena.
  Figure/Table
  Supplementary
  Article Metrics

Keywords predictive models; descriptive models; cementitious materials; freeze-thaw cycles; poro-mechanics

Citation: Frédéric Grondin. Review on the modelling methods for the frost action characterization in cementitious materials at different scales. AIMS Materials Science, 2019, 6(6): 884-899. doi: 10.3934/matersci.2019.6.884

References

  • 1. Pigeon M, Pleau R (1995) Durability of Concrete in Cold climates, 1st Ed., London: CRC Press.
  • 2. Power TC (1945) A working hypothesis for further studies of frost resistance of concrete. ACI Jour 41: 245-272.
  • 3. Pigeon M, Marchand J, Pleau R (1996) Frost resistant concrete. Constr Build Mater 10: 339-348.
  • 4. Hobbs PV (1974) Ice Physics, London: Oxford University Press.
  • 5. Powers TC (1955) Basic considerations pertaining to freezing-and-thawing tests. ASTM Proceedings 55: 1132-1155.
  • 6. Powers TC, Willis TF (1950) The air requirement of frost resistant concrete. Highw Res Board Proc 29: 184-211.
  • 7. Litvan GG (1973) Frost action in cement paste. Mater Constr 6: 293-298.
  • 8. Mascarenhas WJ, Akay HU, Pikal MJ (1997) A computational model for finite element analysis of the freeze-drying process. Comput Methods Appl Mech Engrg 148: 105-124.
  • 9. Schulson EM (1998) Ice damage to concrete. USA-CRREL Special Report 98-6.
  • 10. Penttala V (1999) Strains and pressures induced by freezing mortars exposed in sodium chloride solution. Concr Sci Eng 1: 2-14.
  • 11. Powers TC, Helmuth RA (1953) Theory of volume changes in hardened portland-cement paste during freezing. Highw Res Board Proc 32: 285-297.
  • 12. Léger P, Cote M, Tinawi R (1995) Thermal protection of concrete dams subjected to freeze-thaw cycles. Can J Civ Eng 22: 588-602.
  • 13. Huon V, Cousin B, Maisonneuve O (2001) Mise en évidence et quantification des couplages thermomécaniques réversibles et irréversibles dans les bétons sains et endommagés par des cycles gel-dégel. Comptes Rendus de l'Académie des Sciences-Series ⅡB-Mechanics 329: 331-335. Available from: https://www.sciencedirect.com/science/article/pii/S1620774201013411.
  • 14. Verbeck GJ, Landgren R (1960) Influence of physical characteristics of aggregates on frost resistance of concrete. Proceedings of ASTM International 60: 1063-1079.
  • 15. Casbonne-Renaud F (1998) Comportement aux cycles gel-dégel des bétons de granulats calcaires [PhD's thesis]. Institut National Polytechnique de Lorraine, France. Available from: https://hal.univ-lorraine.fr/tel-01750749.
  • 16. Bager DH, Sellevold EJ (1986) Ice formation in hardened cement paste, part I-room temperature cured pastes with variable moisture contents. Cem Concr Res 16: 709-720.
  • 17. Bager DH, Sellevold EJ (1986) Ice formation in hardened cement paste, Part Ⅱ-drying and resaturation on room temperature cured pastes. Cem Concr Res 16: 835-844.
  • 18. Fen-Chong T, Fabbri A (2005) Freezing and thawing porous media: experimental study with a dielectric capacitive method. C R Mec 333: 425-430.
  • 19. Kaufmann J (1999) Experimental identification of damage mechanisms in cementitious porous materials on phase transition of pore solution under frost deicing salt attack [PhD's thesis]. Ecole polytechnique fédérale de Lausanne EPFL, Switzerland.
  • 20. Perron S, Beaudoin JJ (2002) Freezing of water in portland cement paste-an ac impedance spectroscopy study. Cem Concr Compos 24: 467-475.
  • 21. Setzer MJ, Liebrecht A (2002) Frost dilatation and pore system of hardened cement paste under different storage conditions, In: Setzer MZ, Auberg R, Keck H-J, 2nd Rilem International Workshop on Frost Resistance of Concrete, Cachan: RILEM Publications, 169-178.
  • 22. Geiker MR, Laugesen P (2001) On the effect of laboratory conditioning and freeze/thaw exposure on moisture profiles in HPC. Cem Concr Res 31: 1831-1836.
  • 23. Kruschwitz J, Bluhm J (2005) Modeling of ice formation in porous solids with regard to the description of frost damage. Comput Mater Sci 32: 407-417.
  • 24. Hain M, Wriggers P (2008) Computational homogenization of micro-structural damage due to frost in hardened cement paste. Finite Elem Anal Des 44: 233-244.
  • 25. Wardeh G, Perrin B (2008) Numerical modelling of the behaviour of consolidated porous media exposed to frost action. Constr Build Mater 22: 600-608.
  • 26. Zuber B, Marchand J (2000) Modeling the deterioration of hydrated cement systems exposed to frost action-Part 1: Description of the mathematical model. Cem Concr Res 30: 1929-1939.
  • 27. Liu Z, Yu X (2011) Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation. Acta Geotechnica 6: 51-65.
  • 28. Coussy O, Monteiro PJM (2008) Poroelastic model for concrete exposed to freezing temperatures. Cem Concr Res 38: 40-48.
  • 29. Matala S (1995) Effects of carbonation on the pore structure of granulated blast furnace slag concrete [PhD's thesis]. Helsinki University of Technology, Finland.
  • 30. Rahman S, Grasley Z (2014) A poromechanical model of freezing concrete to elucidate damage mechanisms associated with substandard aggregates. Cem Concr Res 55: 88-101.
  • 31. Liu L, Ye G, Schlangen E, et al. (2011) Modeling of the internal damage of saturated cement paste due to ice crystallization pressure during freezing. Cem Concr Res 33: 562-571.
  • 32. Ng K, Dai Q (2014) Numerical investigation of internal frost damage of digital cement paste samples with cohesive zone modeling and SEM microstructure characterization. Constr Build Mater 50: 266-275.
  • 33. Zeng Q, Fen-Chong T, Dangla P, et al. (2011) A study of freezing behavior of cementitious materials by poromechanical approach. Int J Solids Struct 48: 3267-3273.
  • 34. Koniorczyk M, Gawin D, Schrefler BA (2015) Modeling evolution of frost damage in fully saturated porous materials exposed to variable hygro-thermal conditions. Comput Methods Appl Mech Engrg 297: 38-61.
  • 35. Li B, Mao J, Nawa T, et al. (2017) Mesoscopic damage model of concrete subjected to freeze-thaw cycles using mercury intrusion porosimetry and differential scanning calorimetry (MIPDSC). Constr Build Mater 147: 79-90.
  • 36. Gong F, Sicat E, Zhang D, et al. (2015) Stress analysis for concrete materials under multiple freeze-thaw cycles. J Adv Concr Technol 13: 124-134.
  • 37. Hasan M, Okuyama H, Sato Y, et al. (2004) Stress-strain model of concrete damaged by freezing and thawing cycles. J Adv Concr Technol 2: 89-99.
  • 38. Piltner R, Monteiro PJM (2000) Stress analysis of expansive reactions in concrete. Cem Concr Res 30: 843-848.
  • 39. Fagerlund G (2004) A Service Life Model for Internal Frost Damage in Concrete. Lund: Lund University, 3119.
  • 40. Hanjari KZ, Utgenannt P, Lundgren K (2011) Experimental study of the material and bond properties of frost-damaged concrete. Cem Concr Res 41: 244-254.
  • 41. Jin S, Zhang J, Huang B (2013) Fractal analysis of effect of air void on freeze-thaw resistance of concrete. Constr Build Mater 47: 126-130.
  • 42. Karakoç MB, Demirboğa R, Türkmen İ, et al. (2011) Modeling with ANN and effect of pumice aggregate and air entrainment on the freeze-thaw durabilities of HSC. Constr Build Mater 25: 4241-4249.
  • 43. Štemberk P, da Silva WRL, Sýkorová J, et al. (2013) Fuzzy modeling of combined effect of winter road maintenance and cyclic loading on concrete slab bridge. Adv Eng Softw 62: 97-108.
  • 44. Kim S, Gopalakrishnan K, Ceylan H (2009) Neural networks application in pavement infrastructure materials. Intel Soft Comp in Infra Sys Eng 259: 47-66.
  • 45. Duan A, Tian Y, Dai JG, et al. (2014) A stochastic damage model for evaluating the internal deterioration of concrete due to freeze-thaw action. Mater Struct 47: 1025-1039.
  • 46. Chen F, Qiao P (2015) Probabilistic damage modeling and service-life prediction of concrete under freeze-thaw action. Mater Struct 48: 2697-2711.

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved