Citation: Alexandre Lavrov, Elvia Anabela Chavez Panduro, Kamila Gawel, Malin Torsæter. Electrophoresis-induced structural changes at cement-steel interface[J]. AIMS Materials Science, 2018, 5(3): 414-421. doi: 10.3934/matersci.2018.3.414
[1] | Bo Sun, Ming Wei, Binbin Jing . Optimal model for the aircraft arrival and departure scheduling problem with fuzzy runway incursion time. Mathematical Biosciences and Engineering, 2021, 18(5): 6724-6738. doi: 10.3934/mbe.2021334 |
[2] | Ming Wei, Ligang Zhao, Zhijian Ye, Binbin Jing . An integrated optimization mode for multi-type aircraft flight scheduling and routing problem. Mathematical Biosciences and Engineering, 2020, 17(5): 4990-5004. doi: 10.3934/mbe.2020270 |
[3] | Bin Deng, Ran Ding, Jingfeng Li, Junfeng Huang, Kaiyi Tang, Weidong Li . Hybrid multi-objective metaheuristic algorithms for solving airline crew rostering problem with qualification and language. Mathematical Biosciences and Engineering, 2023, 20(1): 1460-1487. doi: 10.3934/mbe.2023066 |
[4] | Zilong Zhuang, Zhiyao Lu, Zizhao Huang, Chengliang Liu, Wei Qin . A novel complex network based dynamic rule selection approach for open shop scheduling problem with release dates. Mathematical Biosciences and Engineering, 2019, 16(5): 4491-4505. doi: 10.3934/mbe.2019224 |
[5] | Yafei Li, Yuxi Liu . Multi-airport system flight slot optimization method based on absolute fairness. Mathematical Biosciences and Engineering, 2023, 20(10): 17919-17948. doi: 10.3934/mbe.2023797 |
[6] | Bin Wang, Fagui Liu . Task arrival based energy efficient optimization in smart-IoT data center. Mathematical Biosciences and Engineering, 2021, 18(3): 2713-2732. doi: 10.3934/mbe.2021138 |
[7] | Shirin Ramezan Ghanbari, Behrouz Afshar-Nadjafi, Majid Sabzehparvar . Robust optimization of train scheduling with consideration of response actions to primary and secondary risks. Mathematical Biosciences and Engineering, 2023, 20(7): 13015-13035. doi: 10.3934/mbe.2023580 |
[8] | Santiago Iturriaga, Jonathan Muraña, Sergio Nesmachnow . Bio-inspired negotiation approach for smart-grid colocation datacenter operation. Mathematical Biosciences and Engineering, 2022, 19(3): 2403-2423. doi: 10.3934/mbe.2022111 |
[9] | Jianguo Duan, Mengting Wang, Qinglei Zhang, Jiyun Qin . Distributed shop scheduling: A comprehensive review on classifications, models and algorithms. Mathematical Biosciences and Engineering, 2023, 20(8): 15265-15308. doi: 10.3934/mbe.2023683 |
[10] | Yingjia Tan, Bo Sun, Li Guo, Binbin Jing . Novel model for integrated demand-responsive transit service considering rail transit schedule. Mathematical Biosciences and Engineering, 2022, 19(12): 12371-12386. doi: 10.3934/mbe.2022577 |
We consider the initial boundary value problem of the following porous elastic system with nonlinear or linear weak damping terms and nonlinear source terms
{utt−μuxx−bϕx+g1(ut)=f1(u,ϕ), x∈(0,L), t∈[0,T),ϕtt−δϕxx+bux+ξϕ+g2(ϕt)=f2(u,ϕ), x∈(0,L), t∈[0,T),u(x,0)=u0(x), ut(x,0)=u1(x), x∈(0,L),ϕ(x,0)=ϕ0(x), ϕt(x,0)=ϕ1(x), x∈(0,L),u(0,t)=u(L,t)=ϕ(0,t)=ϕ(L,t)=0, t∈[0,T), | (1.1) |
where u(x,t) and ϕ(x,t) are the displacement of the solid elastic material and the volume fraction, respectively, μ, b, δ and ξ are coefficients with physical meaning satisfying
μ>0, b≠0, δ>0, ξ>0 and μξ>b2, |
u0, u1,ϕ0 and ϕ1 are given initial data, and the assumptions of weak damping terms g1, g2 and nonlinear source terms f1, f2 will be given in Section 2 by Assumption 2.1 and Assumption 2.2, respectively.
In the physical view, elastic solid with voids is an important extension of the classical elasticity theory. It allows the processing of porous solids in which the matrix material is elastic and the interstices are void of material (see [8,20] and references therein). Porous media reflects the properties of many materials in the real world, including rocks, soil, wood, ceramics, pressed powder, bones, natural gas hydrates and so on. Due to the diversity of porous media and its special physical properties, such models were widely applied in the past few decades in the petroleum industry, engineering, etc (see [1,12,13,16,17,19]).
As mathematical efforts, Goodman and Cowin [2,8] established the continuum theory and the variational principle of granular materials. Then Nunziato and Cowin [3,18] developed the linear and nonlinear theories of porous elastic materials. In recent years, the study of the porous elastic system also attracted a lot of attention [5,6,7,21,22]. We particularly mention that Freitas et.al. in [5] studied the problem (1.1) and proved the global existence and finite time blowup of solutions. Especially, they built up the continuous dependence on initial data of the local solution in the following version
ˆE(t)≤eC0tˆE(0), C0>0, | (1.2) |
which can also be extended to the global solution with the same form. By denoting z=(u,ϕ) and ˜z=(˜u,˜ϕ) the global solutions to problem (1.1) corresponding to the initial data z0, z1 and ˜z0, ˜z1, respectively, ˆE(0) is the distance of two sets of different initial data
z0,˜z0∈V:=H10(0,L)×H10(0,L), |
and
z1,˜z1∈L2(0,L)×L2(0,L), |
that is
ˆE(0):=12‖z1−˜z1‖22+12‖z0−˜z0‖2V, |
and ˆE(t) is the distance of solutions induced by these two sets of different initial data
ˆE(t):=12‖zt−˜zt‖22+12‖z−˜z‖2V. |
The growth estimate (1.2) indicates that the growth of the distance of solutions ˆE(t) is bounded by an exponential growth bound with time t. In other words, as the time t goes to infinity, the distance of solutions ˆE(t) of the system is bounded by a very large bound, by which it is hard to explain the solutions z and ˜z of such a dissipative system with the initial data z0,z1 and ˜z0,˜z1, respectively, as both of them are expected to decay to zero as the time t goes to infinity. Hence, the estimate on the growth of the distance of solutions ˆE(t) is proposed to be improved to reflect the decay properties with time t to be consistent with the dissipative behavior of the system. To achieve this, the efforts in the present paper are illustrated by two new continuous dependence results on the initial data for the global-in-time solution. Especially, it is found that the system with the linear damping term behaves differently from that with the nonlinear damping term. Hence in the present paper, we adopt two different estimate strategies to deal with the problem and derive two different conclusions:
(i) For the linear damping case, i.e., g1(ut) and g2(ϕt) take the linear form and satisfy Assumption 2.1, we have
ˆE(t)≤C1(ˆE(0)+C2(ˆE(0))a2)ρe−C3t, | (1.3) |
where the positive constants C1,C2,C3,a,ρ are independent of initial data.
(ii) For the nonlinear damping case, i.e., g1(ut) and g2(ϕt) take the nonlinear form and satisfy Assumption 2.1, we have
ˆE(t)≤C5(ˆE(0)+C6(ˆE(0))b02)κe−C7t, | (1.4) |
where 0<κ<1, and the positive constants C5,C6,C7,b0 are dependent of initial data.
By observing (1.3) and (1.4), we find that these two continuous dependence results can reasonably reflect the decay property of the dissipative system (1.1). The difference between (1.3) and (1.4) is that the parameters in (1.3) do not depend on the initial data, while the parameters in (1.4) depend on the initial data. Hence although (1.3) and (1.4) are in the similar form, we present and prove them separately.
Additionally, to develop the finite time blowup of the solution to problem (1.1) at the arbitrary positive initial energy level derived in [22], we estimate the lower bound of the blowup time in the present paper for the nonlinear weak damping case by noticing that the linear weak damping case was discussed in [22]. For more relative works on the blowup of solutions to the hyperbolic equations at high initial energy, please refer to [10,11,14,15,25]. We can also refer to [9,23,24] for the works about the blowup of solutions to parabolic equations.
The rest of the present paper is organized as follows. In Section 2, we give some notations, assumptions about damping terms and source terms, and functionals and manifolds for the potential well theory. In Section 3, we deal with the continuous dependence on initial data of the global solution for the linear weak damping case. In Section 4, we establish the continuous dependence on initial data of the global solution for the nonlinear weak damping case. In Section 5, we estimate the lower bound of blowup time at the arbitrarily positive initial energy level for the nonlinear weak damping case.
We denote the L2-inner product by
(u,v):=∫L0uvdx, |
and the norm of Lp(0,L) by
‖u‖p:=(∫L0|u|pdx)1p. |
As we are dealing with the system of two equations, for z=(u,ϕ) and ˆz=(ˆu,ˆϕ), we introduce
(z,ˆz):=(u,ˆu)+(ϕ,ˆϕ) |
and
‖z‖p:=(‖u‖pp+‖ϕ‖pp)1p. | (2.1) |
Further, we consider the Hilbert space
V=H10(0,L)×H10(0,L) |
with inner products given by
(z,ˆz)V:=∫L0(μuxˆux+δϕxˆϕx+ξϕˆϕ+b(uxˆϕ+ϕˆux))dx | (2.2) |
for z=(u,ϕ), ˆz=(ˆu,ˆϕ), where μ, δ, ξ, b are the coefficients of the terms in the equations in problem (1.1). Therefore, we have
‖z‖2V:=∫L0(μu2x+δϕ2x+ξϕ2+2buxϕ)dx. | (2.3) |
The norm ‖z‖V is equivalent to the corresponding usual norm on V, i.e., H10(0,L)×H10(0,L), introduced in [20]. For 1<q<+∞, we define
Rq:=supz∈V∖{0}‖z‖qq‖z‖qV, | (2.4) |
which means
‖z‖qq≤Rq‖z‖qV | (2.5) |
for z∈V. Here, due to H10(0,L)↪Lq(0,L) for 1<q<+∞, we see 0<Rq<+∞. And we denote
F(z):=(f1(u,ϕ),f2(u,ϕ)) |
and
G(zt):=(g1(ut),g2(ϕt)), |
where fj(u,ϕ), j=1,2, are the source terms, and g1(ut) and g2(ϕt) are the damping terms in the equations in problem (1.1).
We give the following assumptions about damping terms, i.e., g1(ut) and g2(ϕt), and source terms, i.e., fj(u,ϕ), j=1,2, in the equations in problem (1.1).
Assumption 2.1. (Damping terms) Let g1,g2:R→R be continuous, monotone increasing functions with g1(0)=g2(0)=0. In addition, there exist positive constants α>0 and β>0 such that
(i) for |s|≥1
α|s|m+1≤g1(s)s≤β|s|m+1, m≥1; | (2.6) |
and
α|s|r+1≤g2(s)s≤β|s|r+1, r≥1; | (2.7) |
(ii) for |s|<1
α|s|ˆm≤|g1(s)|≤β|s|ˆm, ˆm≥1; | (2.8) |
and
α|s|ˆr≤|g2(s)|≤β|s|ˆr, ˆr≥1. | (2.9) |
Assumption 2.2. (Source terms) For the functions fj∈C1(R2), j=1,2, there exists a positive constant C such that
|∇fj(η)|≤C(|η1|p−1+|η2|p−1+1), p>1. | (2.10) |
where η=(η1,η2)∈R2, fj(η)=fj(η1,η2), j=1,2, and
∇fj:=(∂fj∂η1,∂fj∂η2). |
There exists a nonnegative function F∈C2(R2) satisfying
∇F=F | (2.11) |
and
F(λη)=λp+1F(η) | (2.12) |
for all λ>0, where F(η)=F(η1,η2) and
∇F:=(∂F∂η1,∂F∂η2). | (2.13) |
According to [5], Assumption 2.2 implies that there exists a constant M>0 such that
F(z)≤M(|u|p+1+|ϕ|p+1). | (2.14) |
Next, we recall some functionals and manifolds for the potential well theory. We recall the potential energy functional
J(z):=12‖z‖2V−∫L0F(z)dx | (2.15) |
and the Nehari functional
I(z):=‖z‖2V−(p+1)∫L0F(z)dx. |
The energy functional is defined as
E(z(t),zt(t)):=12‖zt‖22+J(z). | (2.16) |
And the Nehari manifold is defined as
N:={z∈V∖{0}| I(z)=0}. |
Then we can define the depth of the potential well
d:=infz∈NJ(z). |
By above, we introduce the stable manifold
W:={z∈V| J(z)<d, I(z)>0}∪{0}. |
Next, since we need to apply the decay rate of the energy in investigating continuous dependence on the initial data of the solution, we recall the following notations used in the investigation of the decay rate of the energy in [5]
ˆd:=sups∈[0,+∞)M(s)=M(s0)=p−12(p+1)((p+1)MRp+1)−2p−1, | (2.17) |
where
M(s):=12s2−MRp+1sp+1, | (2.18) |
and M(s) attains the maximum value at
s0:=((p+1)MRp+1)−1p−1. | (2.19) |
Here, Proposition 2.11 in [5] shows the fact ˆd≤d.
In this section, we consider the model equations in (1.1) with the linear weak damping terms, i.e., r=m=ˆr=ˆm=1. First, we need the following decay result of the energy.
Lemma 3.1. (Decay of the energy) Let Assumption 2.1 and Assumption 2.2 hold with r=m=ˆr=ˆm=1. For any 0<σ<1, if E(z0,z1)<σˆd and z0∈W, then one has
E(z(t),zt(t))<K0e−λ0t | (3.1) |
for t>0, where λ0 and K0 will be defined in the proof.
Proof. We define
H(t):=E(z(t),zt(t))+ε(z,zt), |
where ε>0. Here, according to Cauchy-Schwartz inequality, Young inequality, and (2.5), we have
H(t)≤E(z(t),zt(t))+ε‖z‖2‖zt‖2≤E(z(t),zt(t))+ε2‖z‖22+ε2‖zt‖22≤E(z(t),zt(t))+ε2R2‖z‖2V+ε2‖zt‖22≤E(z(t),zt(t))+εmax{R2,1}(12‖z‖2V+12‖zt‖22) | (3.2) |
and
H(t)≥E(z(t),zt(t))−ε‖z‖2‖zt‖2≥E(z(t),zt(t))−εmax{R2,1}(12‖z‖2V+12‖zt‖22). | (3.3) |
According to Theorem 2.12(ⅳ) in [5], we know
12‖z‖2V+12‖zt‖22≤p+1p−1E(z(t),zt(t)), | (3.4) |
which means that (3.2) and (3.3) turn to
H(t)≤E(z(t),zt(t))+εmax{R2,1}(p+1)p−1E(z(t),zt(t)) | (3.5) |
and
H(t)≥E(z(t),zt(t))−εmax{R2,1}(p+1)p−1E(z(t),zt(t)). | (3.6) |
According to (3.5) and (3.6), we know
α1E(z(t),zt(t))≤H(t)≤α2E(z(t),zt(t)), | (3.7) |
where
α1:=1−εmax{R2,1}(p+1)p−1 |
and
α2:=1+εmax{R2,1}(p+1)p−1. |
We calculate the derivative of the auxiliary functional H(t) with respect to time t as
H′(t)=ddtE(z(t),zt(t))+ε‖zt‖22+ε(ztt,z). | (3.8) |
In (3.8), we have
ddtE(z(t),zt(t))=12ddt‖zt‖22+12ddt‖z‖2V+∫L0ddtF(z)dx=12ddt(‖ut‖22+‖ϕt‖22)+12∫L0ddt(μu2x+δϕ2x+ξϕ2+2buxϕ)dx+∫L0ddtF(z)dx=∫L0(ututt+ϕtϕtt)dx+∫L0(μuxuxt+δϕxϕxt+ξϕϕt+buxtϕ+buxϕt)dx+∫L0∇F(z)⋅ztdx. | (3.9) |
Here, the notation ∇F is defined by (2.13). Thus, according to (2.11), we know ∇F(z)=F(z), which means (3.9) turns to
ddtE(z(t),zt(t))=∫L0(ututt+ϕtϕtt)dx+∫L0(μuxuxt+δϕxϕxt+ξϕϕt+buxtϕ+buxϕt)dx+∫L0F(z)⋅ztdx=∫L0(ututt+ϕtϕtt)dx+∫L0(μuxuxt+δϕxϕxt+ξϕϕt+buxtϕ+buxϕt)dx+∫L0(f1(u,ϕ)ut+f2(u,ϕ)ϕt)dx=∫L0(ututt+ϕtϕtt)dx+∫L0(μuxuxt+δϕxϕxt+ξϕϕt+buxϕt)dx−∫L0butϕxdx+∫L0(f1(u,ϕ)ut+f2(u,ϕ)ϕt)dx=∫L0(ututt+μuxuxt−butϕx−f1(u,ϕ)ut)dx+∫L0(ϕtϕtt+δϕxϕxt+buxϕt+ξϕϕt−f2(u,ϕ)ϕt)dx. | (3.10) |
Testing the both sides of the first equation in (1.1) by ut and integrating both sides over [0,L], we have
∫L0(ututt+μuxuxt−butϕx−f1(u,ϕ)ut)dx=−∫L0g1(ut)utdx. | (3.11) |
And testing the both sides of the second equation in (1.1) by ϕt and integrating both sides over [0,L], we have
∫L0(ϕtϕtt+δϕxϕxt+buxϕt+ξϕϕt−f2(u,ϕ)ϕt)dx=−∫L0g2(ϕt)ϕtdx. | (3.12) |
By substituting (3.11) and (3.12) into (3.10), we have
ddtE(z(t),zt(t))=−∫L0g1(ut)utdx−∫L0g2(ϕt)ϕtdx. | (3.13) |
Next, we use Assumption 2.1 to deal with (3.13). In Assumption 2.1, for |s|≥1, according to (2.6) with m=1 and (2.7) with r=1, we know that
α|s|2≤gj(s)s≤β|s|2, j=1,2. | (3.14) |
Then taking the absolute value of (3.14) gives
α|s|≤|gj(s)|≤β|s|, j=1,2. | (3.15) |
For |s|<1, according to (2.8) with ˆm=1 and (2.9) with ˆr=1, we know that (3.15) also holds. Meanwhile, since g1(0)=g2(0)=0 and gj(s), j=1,2, are assumed to be the increasing functions, for j=1,2, we know gj(s)>0 for s>0 and gj(s)<0 for s<0, which gives gj(s)s≥0, j=1,2, for s∈R. Thus, we have
∫L0g1(ut)utdx+∫L0g2(ϕt)ϕtdx=∫L0|g1(ut)ut|dx+∫L0|g2(ϕt)ϕt|dx≥α‖ut‖22+α‖ϕt‖22=α‖zt‖22, |
which makes (3.13) turn to
ddtE(z(t),zt(t))≤−α‖zt‖22. | (3.16) |
We deal with the term ε(ztt,z) in (3.8). Testing the both sides of the first equation in problem (1.1) by u and integrating both sides over [0,L], we have
(utt,u)=−μ‖ux‖22−b(ux,ϕ)−(g1(ut),u)+(f1(u,ϕ),u). | (3.17) |
And testing the both sides of the second equation in problem (1.1) by ϕ and integrating both sides over [0,L], we have
(ϕtt,ϕ)=−δ‖ϕx‖22−b(ux,ϕ)−ξ‖ϕ‖22−(g2(ϕt),ϕ)+(f2(u,ϕ),ϕ). | (3.18) |
By (3.17) plus (3.18), we have
(ztt,z)=−∫L0(μu2x+δϕ2x+ξϕ2+2buxϕ)dx−(g1(ut),u)−(g2(ϕt),ϕ)+(f1(u,ϕ),u)+(f2(u,ϕ),ϕ)=−‖ϕ‖2V−(G(zt),z)+(F(z),z)≤−‖ϕ‖2V+|(G(zt),z)|+(F(z),z). | (3.19) |
According to (3.16) and (3.19), we know that (3.8) turns to
H′(t)≤−α‖zt‖22+ε‖zt‖22−ε‖z‖2V+ε|(G(zt),z)|+ε(F(z),z). | (3.20) |
Next, we deal with the term ε|(G(zt),z)| in (3.20). By using (3.15) and Hölder inequality, we know
|(G(zt),z)|=|(g1(ut),u)+(g2(ϕt),ϕ)|≤|(g1(ut),u)|+|(g2(ϕt),ϕ)|≤∫L0|g1(ut)||u|dx+∫L0|g2(ϕt)||ϕ|dx≤β∫L0|ut||u|dx+β∫L0|ϕt||ϕ|dx≤β‖ut‖2‖u‖2+β‖ϕt‖2‖ϕ‖2≤2β‖zt‖2‖z‖2. | (3.21) |
Then, We deal with ε(F(z),z) in (3.20). Here, we first need to give
F(z)⋅z=(p+1)F(z). | (3.22) |
For all λ>0, taking the derivative of both sides of (2.12) with respect to λ, we know
ddλF(λz)=∇F(λz)⋅z=ddλλp+1F(z)=(p+1)λpF(z), | (3.23) |
where ∇F is defined by (2.13). By taking λ=1 in (3.23) and using (2.11), we obtain (3.22). According to (3.22) and (2.14), we have
(F(z),z)=∫L0F(z)⋅zdx=(p+1)∫L0F(z)dx≤(p+1)M‖z‖p+1p+1. | (3.24) |
By using (2.5), (3.24) turns to
(F(z),z)≤(p+1)MRp+1‖z‖p+1V=(p+1)MRp+1‖z‖p−1V‖z‖2V. | (3.25) |
Then, we estimate the term ‖z‖p−1V in (3.25). According to Theorem 2.12 (ⅱ) in [5], we know z(t)∈W for t>0. By using I(z(t))>0, i.e., z(t)∈W, we have
(p+1)∫L0F(z(t))dx<‖z(t)‖2V, |
which means
J(z(t))=12‖z(t)‖2V−∫L0F(z(t))dx>12‖z(t)‖2V−1p+1‖z(t)‖2V=p−12(p+1)‖z(t)‖2V. | (3.26) |
Meanwhile, according to (3.16), i.e.,
ddtE(z(t),zt(t))≤0, |
we have E(z(t),zt(t))≤E(z0,z1). Thus, we know
p−12(p+1)‖z(t)‖2V≤J(z(t))≤E(z(t),zt(t))≤E(z0,z1), | (3.27) |
i.e.,
‖z(t)‖p−1V≤(2(p+1)p−1E(z0,z1))p−12, |
for t>0, which implies that (3.25) turns to
(F(z),z)≤(p+1)MRp+1(2(p+1)p−1E(z0,z1))p−12‖z‖2V. | (3.28) |
Due to E(z0,z1)<σˆd being assumed, we know that (3.28) turns to
(F(z),z)≤σp−12‖z‖2V, | (3.29) |
where ˆd is defined by (2.17). Substituting (3.21) and (3.29) into (3.20), we have
H′(t)≤−α‖zt‖22+ε‖zt‖22+εσp−12‖z‖2V−ε‖z‖2V+2εβ‖zt‖2‖z‖2. | (3.30) |
By using Young inequality for δ0>0 and inequality (2.5) for q=2, we know that (3.30) turns to
H′(t)≤−α‖zt‖22+ε‖zt‖22+εσp−12‖z‖2V−ε‖z‖2V+εβδ0‖zt‖22+εβδ0R2‖z‖2V=−(α−ε−εβδ0)‖zt‖22−ε(1−σp−12−βδ0R2)‖z‖2V. | (3.31) |
In (3.31), we choose δ0>0 to make 1−σp−12−βδ0R2>0 hold, where 1−σp−12>0 due to σ∈(0,1). Then, we select ε>0 such that α−ε−εβδ0>0 and
α1=1−εmax{R2,1}(p+1)p−1>0. |
To deal with (3.31), we first have
(α−ε−εβδ0)‖zt‖22+ε(1−σp−12−βδ0R2)‖z‖2V=2(α−ε−εβδ0)12‖zt‖22+2ε(1−σp−12−βδ0R2)12‖z‖2V≥min{2(α−ε−εβδ0),2ε(1−σp−12−βδ0R2)}(12‖zt‖22+12‖z‖2V). | (3.32) |
According to Theorem 2.12 (ⅳ) in [5], (3.32) turns to
(α−ε−εβδ0)‖zt‖22+ε(1−σp−12−βδ0R2)‖z‖2V≥min{2(α−ε−εβδ0),2ε(1−σp−12−βδ0R2)}E(z(t),zt(t)). | (3.33) |
Due to (3.7), i.e., H(t)≤α2E(z(t),zt(t)), (3.33) turns to
(α−ε−εβδ0)‖zt‖22+ε(1−σp−12−βδ0R2)‖z‖2V≥min{2(α−ε−εβδ0),2ε(1−σp−12−βδ0R2)}α2H(t). | (3.34) |
Thus, we know that (3.31) implies
H′(t)≤−λ0H(t), | (3.35) |
where
λ0:=min{2(α−ε−εβδ0),2ε(1−σp−12−βδ0R2)}α2. | (3.36) |
By using Gronwall's inequality, (3.35) gives
H(t)≤e−λ0tH(0). | (3.37) |
According to (3.7), (3.37), and the assumptions E(z0,z1)<σˆd and 0<σ<1, we have
E(z(t),zt(t))≤α2E(z0,z1)α1e−λ0t<α2σˆdα1e−λ0t<K0e−λ0t, | (3.38) |
where
K0:=α2ˆdα1. | (3.39) |
Theorem 3.2. (Continuous dependence on initial data for linear weak damping case) Let Assumption 2.1 and Assumption 2.2 hold with r=m=ˆr=ˆm=1. For any 0<σ<1, suppose E(z0,z1)<σˆd, z0∈W, E(˜z0,˜z1)<σˆd and ˜z0∈W. Let z=(u,ϕ) and ˜z=(˜u,˜ϕ) be the global solutions to problem (1.1) with the initial data z0, z1, and ˜z0, ˜z1, respectively. Then one has
ˆE(t)≤C1(ˆE(0)+C2(ˆE(0))a2)ρe−C3t, | (3.40) |
where
C1:=(1+C4eC4λ0(p−1)λ0(p−1))ρ(4(p+1)K0p−1)1−ρ,C2:=2a2Nλ1,C3:=λ0(1−ρ),C4:=43CR124R124(p−1)(2(p+1)K0p−1)p−1,0<a<min{2λ0ˉMC+λ0,1},0<ρ<1, | (3.41) |
λ0 and K0 are defined by (3.36) and (3.39), respectively, R4(p−1) is the best embedding constant defined in (2.4) taking q=4(p−1),
λ1:=λ0(2−a)−aˉMC2, |
N:=21−aC(2K0)2−a2+23−aCR122(2(p+1)K0p−1)12(2K0)1−a2, |
and
ˉM:=max{23252R124(2R4(p−1)(2(p+1)σˆdp−1)2(p−1)+L)12,1}. | (3.42) |
Proof. We denote w:=z−˜z. According to the proof of Theorem 2.5 in [5], we notice that
ˆE(t)≤ˆE(0)+∫t0∫L0(F(z(τ))−F(˜z(τ)))wt(τ)dxdτ | (3.43) |
holds by Assumption 2.1 and Assumption 2.2. In the following, we shall finish this proof by considering the following two steps. In Step I, we shall derive a similar estimate of the growth of ˆE(t) to (135) in [5]. As we build this estimate for the global solution instead of the local solution treated in [5], we have to rebuild all the necessary estimates based on the conditions for global existence theory.
Step Ⅰ: Global estimate of ˆE(t) for global solution.
We estimate the term ∫t0∫L0(F(z(τ))−F(˜z(τ)))wt(τ)dxdτ in (3.43) as follows
∫L0(F(z(t))−F(˜z(t)))⋅wtdx=∫L0(f1(z)−f1(˜z))(ut−˜ut)dx+∫L0(f2(z)−f2(˜z))(ϕt−˜ϕt)dx≤∫L0|f1(z)−f1(˜z)||ut−˜ut|dx+∫L0|f2(z)−f2(˜z)||ϕt−˜ϕt|dx. | (3.44) |
Here, according to the proof of Lemma 3.2 in [5], we notice that (2.10) in Assumption 2.2 gives
|fj(z)−fj(˜z)|≤C|z−˜z|(|u|p−1+|˜u|p−1+|ϕ|p−1+|˜ϕ|p−1+1), j=1,2, | (3.45) |
which means (3.44) turns to
∫L0(F(z(t))−F(˜z(t)))⋅wtdx≤∫L0C|z−˜z|(|u|p−1+|˜u|p−1+|ϕ|p−1+|˜ϕ|p−1+1)|ut−˜ut|dx⏟:=A1+∫L0C|z−˜z|(|u|p−1+|˜u|p−1+|ϕ|p−1+|˜ϕ|p−1+1)|ϕt−˜ϕt|dx⏟:=A2. | (3.46) |
Next, we deal with A1 and A2 separately. For A1, by Hölder inequality and Young inequality, we have
A1≤C(∫L0|z−˜z|2(|u|p−1+|˜u|p−1+|ϕ|p−1+|˜ϕ|p−1+1)2dx)12(∫L0|ut−˜ut|2dx)12≤C2∫L0|z−˜z|2(|u|p−1+|˜u|p−1+|ϕ|p−1+|˜ϕ|p−1+1)2dx+C2∫L0|ut−˜ut|2dx. | (3.47) |
By the similar process, we can deal with A_{2} as
\begin{align} A_{2}\leq&\frac{C}{2}\int_{0}^{L}|z-\tilde{z}|^{2}(|u|^{p-1}+|\tilde{u}|^{p-1}+|\phi|^{p-1}+|\tilde{\phi}|^{p-1}+1)^{2}{\rm d}x\\ &+\frac{C}{2}\int_{0}^{L}|\phi_{t}-\tilde{\phi}_{t}|^{2}{\rm d}x. \end{align} | (3.48) |
According to (3.47), (3.48) and Hölder inequality, we know that (3.46) turns to
\begin{align} &\int_{0}^{L}\left(\mathcal{F}(z(t))-\mathcal{F}(\tilde{z}(t))\right)\cdot w_{t}{\rm d}x\\ \leq&C\int_{0}^{L}|z-\tilde{z}|^{2}(|u|^{p-1}+|\tilde{u}|^{p-1}+|\phi|^{p-1}+|\tilde{\phi}|^{p-1}+1)^{2}{\rm d}x+\frac{C}{2}\|w_{t}\|^{2}_{2}\\ \leq&C\left(\int_{0}^{L}|z-\tilde{z}|^{4}{\rm d}x\right)^{\frac{1}{2}}\left(\int_{0}^{L}(|u|^{p-1}+|\tilde{u}|^{p-1}+|\phi|^{p-1}+|\tilde{\phi}|^{p-1}+1)^{4}{\rm d}x\right)^{\frac{1}{2}}\\ &+\frac{C}{2}\|w_{t}\|^{2}_{2}. \end{align} | (3.49) |
In (3.49), by noticing z = (u, \phi) , \tilde{z} = (\tilde{u}, \tilde{\phi}) , we see that
\begin{align} &\left(\int_{0}^{L}|z-\tilde{z}|^{4}{\rm d}x\right)^{\frac{1}{2}}\\ = &\left(\int_{0}^{L}\left(\left(|u-\tilde{u}|^{2}+|\phi-\tilde{\phi}|^{2}\right)^{\frac{1}{2}}\right)^{4}{\rm d}x\right)^{\frac{1}{2}}\\ = &\left(\int_{0}^{L}\left(|u-\tilde{u}|^{4}+|\phi-\tilde{\phi}|^{4}+2|u-\tilde{u}|^{2}|\phi-\tilde{\phi}|^{2}\right){\rm d}x\right)^{\frac{1}{2}}\\ = &\left(\int_{0}^{L}\left(|u-\tilde{u}|^{4}+|\phi-\tilde{\phi}|^{4}\right){\rm d}x+\int_{0}^{L}2|u-\tilde{u}|^{2}|\phi-\tilde{\phi}|^{2}{\rm d}x\right)^{\frac{1}{2}}. \end{align} | (3.50) |
By using Hölder inequality and Young inequality, we know (3.50) turns to
\begin{align} &\left(\int_{0}^{L}|z-\tilde{z}|^{4}{\rm d}x\right)^{\frac{1}{2}}\\ \leq&\left(\int_{0}^{L}\left(|u-\tilde{u}|^{4}+|\phi-\tilde{\phi}|^{4}\right){\rm d}x+2\|u-\tilde{u}\|_{4}^{2}\|\phi-\tilde{\phi}\|_{4}^{2}\right)^{\frac{1}{2}}\\ \leq&\left(2\|u-\tilde{u}\|_{4}^{4}+2\|\phi-\tilde{\phi}\|_{4}^{4}\right)^{\frac{1}{2}}\\ = &2^{\frac{1}{2}}\|z-\tilde{z}\|^{2}_{4}. \end{align} | (3.51) |
Next, we deal with \int_{0}^{L}(|u|^{p-1}+|\tilde{u}|^{p-1}+|\phi|^{p-1}+|\tilde{\phi}|^{p-1}+1)^{4}{\rm d}x in (3.49). For k_{1} , k_{2} , k_{3} , k_{4} , k_{5}\geq0 , we have
\begin{align*} &\left(k_{1}+k_{2}+k_{3}+k_{4}+k_{5}\right)^{4}\nonumber\\ \leq&\left(5\max\left\{k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right\}\right)^{4}\nonumber\\ = &5^{4}\max\left\{k_{1}^{4}, k_{2}^{4}, k_{3}^{4}, k_{4}^{4}, k_{5}^{4}\right\}\nonumber\\ \leq&5^{4}\left(k_{1}^{4}+k_{2}^{4}+k_{3}^{4}+k_{4}^{4}+k_{5}^{4}\right). \end{align*} |
From above observation, we have
\begin{align} &\int_{0}^{L}\left(|u|^{p-1}+|\tilde{u}|^{p-1}+|\phi|^{p-1}+|\tilde{\phi}|^{p-1}+1\right)^{4}{\rm d}x\\ \leq&5^{4}\int_{0}^{L}\left(|u|^{4(p-1)}+|\tilde{u}|^{4(p-1)}+|\phi|^{4(p-1)}+|\tilde{\phi}|^{4(p-1)}+1\right) {\rm d}x. \end{align} | (3.52) |
According to (3.51) and (3.52), (3.49) turns to
\begin{align} &\int_{0}^{L}\left(\mathcal{F}(z)-\mathcal{F}(\tilde{z})\right)\cdot w_{t}{\rm d}x\\ \leq&C2^{\frac{1}{2}}\|z-\tilde{z}\|_{4}^{2}\left(5^{4}\int_{0}^{L}\left(|u|^{4(p-1)}+|\tilde{u}|^{4(p-1)}+|\phi|^{4(p-1)}+|\tilde{\phi}|^{4(p-1)}+1\right) {\rm d}x\right)^{\frac{1}{2}}\\ &+\frac{C}{2}\|w_{t}\|^{2}_{2}\\ = &C2^{\frac{1}{2}}5^{2}\|z-\tilde{z}\|^{2}_{4}\left(\int_{0}^{L}\left(|u|^{4(p-1)}+|\phi|^{4(p-1)}\right){\rm d}x \right.\\ &\left.+\int_{0}^{L}\left(|\tilde{u}|^{4(p-1)}+|\tilde{\varphi}|^{4(p-1)}\right){\rm d}x+L\right)^{\frac{1}{2}}+\frac{C}{2}\|w_{t}\|^{2}_{2}\\ = &C2^{\frac{1}{2}}5^{2}\|z-\tilde{z}\|^{2}_{4}\left(\|z\|^{4(p-1)}_{4(p-1)}+\|\tilde{z}\|^{4(p-1)}_{4(p-1)}+L\right)^{\frac{1}{2}}+\frac{C}{2}\|w_{t}\|^{2}_{2}. \end{align} | (3.53) |
By using (2.5), we know that (3.53) turns to
\begin{align} &\int_{0}^{L}\left(\mathcal{F}(z)-\mathcal{F}(\tilde{z})\right)\cdot w_{t}{\rm d}x\\ \leq&C2^{\frac{1}{2}}5^{2}R_{4}^{\frac{1}{2}}\|z-\tilde{z}\|^{2}_{V}\left(R_{4(p-1)}\|z\|^{4(p-1)}_{V}+R_{4(p-1)}\|\tilde{z}\|^{4(p-1)}_{V}+L\right)^{\frac{1}{2}}+\frac{C}{2}\|w_{t}\|^{2}_{2}. \end{align} | (3.54) |
According to (3.27) and the assumptions \mathcal{E}(z_{0}, z_{1}) < \sigma \hat{d} and \mathcal{E}(\tilde{z}_{0}, \tilde{z}_{1}) < \sigma \hat{d} , we have
\begin{align} \|z\|^{2}_{V} < \frac{2(p+1)\sigma \hat{d}}{p-1} \end{align} | (3.55) |
and
\begin{align} \|\tilde{z}\|^{2}_{V} < \frac{2(p+1)\sigma \hat{d}}{p-1}. \end{align} | (3.56) |
Substituting (3.55) and (3.56) into (3.54), we have
\begin{align} &\int_{0}^{L}\left(\mathcal{F}(z)-\mathcal{F}(\tilde{z})\right)\cdot w_{t}{\rm d}x\\ \leq&C2^{\frac{1}{2}}5^{2}R_{4}^{\frac{1}{2}}\left(2R_{4(p-1)}\left(\frac{2(p+1)\sigma \hat{d}}{p-1}\right)^{2(p-1)}+L\right)^{\frac{1}{2}}\|w\|^{2}_{V}+\frac{C}{2}\|w_{t}\|^{2}_{2}\\ \leq&\bar{M}C\left(\frac{1}{2}\|w_{t}\|^{2}_{2}+\frac{1}{2}\|w\|^{2}_{V}\right)\\ = &\bar{M}C\widehat{E}(t). \end{align} | (3.57) |
Due to (3.57), we know
\begin{align} &\int_{0}^{t}\int_{0}^{L}\left(\mathcal{F}(z(\tau))-\mathcal{F}(\tilde{z}(\tau))\right)\cdot w_{t}{\rm d}x{\rm d}\tau\leq \bar{M}C\int_{0}^{t}\widehat{E}(\tau){\rm d}\tau. \end{align} | (3.58) |
Substituting (3.58) into (3.43), we have
\begin{align} &\widehat{E}(t)\leq \widehat{E}(0)+\bar{M}C\int_{0}^{t}\widehat{E}(\tau){\rm d}\tau. \end{align} | (3.59) |
Then, by a variation of Gronwall's inequality (see Appendix), we have
\begin{align} &\widehat{E}(t)\leq \widehat{E}(0)e^{\bar{M}Ct}. \end{align} | (3.60) |
As the growth estimate (3.60) we derived in Step \rm{I} does not reflect the decay of the solution, we shall deal with the decay terms and the non-decay terms separately in Step \rm{II} to upgrade the results obtained in Step \rm{I} , i.e., (3.60), by giving an improved estimate to reflect the dissipative property of the system (1.1).
Step Ⅱ: Decay estimate of \widehat{E}(t) .
According to (3.46), we have
\begin{align} &\int_{0}^{L}\left(\mathcal{F}(z(t))-\mathcal{F}(\tilde{z}(t))\right)\cdot w_{t}{\rm d}x\\ \leq&\underbrace{\int_{0}^{L}C|z-\tilde{z}|(|u|^{p-1}+|\tilde{u}|^{p-1}+|\phi|^{p-1}+|\tilde{\phi}|^{p-1})|u_{t}-\tilde{u}_{t}|{\rm d}x}_{: = A_{3}}\\ &+\underbrace{\int_{0}^{L}C|z-\tilde{z}|(|u|^{p-1}+|\tilde{u}|^{p-1}+|\phi|^{p-1}+|\tilde{\phi}|^{p-1})|\phi_{t}-\tilde{\phi}_{t}|{\rm d}x}_{: = A_{4}}\\ &+\int_{0}^{L}C|z-\tilde{z}||u_{t}-\tilde{u}_{t}|{\rm d}x+\int_{0}^{L}C|z-\tilde{z}||\phi_{t}-\tilde{\phi}_{t}|{\rm d}x. \end{align} | (3.61) |
By the similar process dealing with A_{1} and A_{2} , we can treat A_{3} and A_{4} as
\begin{align} A_{3}\leq&\frac{C}{2}\int_{0}^{L}|z-\tilde{z}|^{2}(|u|^{p-1}+|\tilde{u}|^{p-1}+|\phi|^{p-1}+|\tilde{\phi}|^{p-1})^{2}{\rm d}x\\ &+\frac{C}{2}\int_{0}^{L}|u_{t}-\tilde{u}_{t}|^{2}{\rm d}x \end{align} | (3.62) |
and
\begin{align} A_{4}\leq&\frac{C}{2}\int_{0}^{L}|z-\tilde{z}|^{2}(|u|^{p-1}+|\tilde{u}|^{p-1}+|\phi|^{p-1}+|\tilde{\phi}|^{p-1})^{2}{\rm d}x\\ &+\frac{C}{2}\int_{0}^{L}|\phi_{t}-\tilde{\phi}_{t}|^{2}{\rm d}x. \end{align} | (3.63) |
By the similar process of obtaining (3.54), i.e.,
\begin{align*} A_{1}+A_{2}\leq&C2^{\frac{1}{2}}5^{2}R_{4}^{\frac{1}{2}}\|z-\tilde{z}\|^{2}_{V}\left(R_{4(p-1)}\|z\|^{4(p-1)}_{V}+R_{4(p-1)}\|\tilde{z}\|^{4(p-1)}_{V}+L\right)^{\frac{1}{2}}\nonumber\\ &+\frac{C}{2}\|w_{t}\|^{2}_{2}, \end{align*} |
we can use (3.62) and (3.63) to give
\begin{align} &A_{3}+A_{4}\leq C2^{\frac{1}{2}}4^{2}R^{\frac{1}{2}}_{4}R^{\frac{1}{2}}_{4(p-1)}\|z-\tilde{z}\|^{2}_{V}\left(\|z\|^{4(p-1)}_{V}+\|\tilde{z}\|^{4(p-1)}_{V}\right)^{\frac{1}{2}}+\frac{C}{2}\|w_{t}\|^{2}_{2}. \end{align} | (3.64) |
Due to (3.26), (2.16) and Lemma 3.1 , we know
\begin{align} &\frac{1}{2}\|z_{t}\|^{2}_{2}+\frac{p-1}{2(p+1)}\|z\|^{2}_{V}\leq\mathcal{E}(z(t), z_{t}(t)) < K_{0}e^{-\lambda_{0}t} \end{align} | (3.65) |
and
\begin{align} &\frac{1}{2}\|\tilde{z}_{t}\|^{2}_{2}+\frac{p-1}{2(p+1)}\|\tilde{z}\|^{2}_{V}\leq \mathcal{E}(\tilde{z}(t), \tilde{z}_{t}(t)) < K_{0}e^{-\lambda_{0}t}. \end{align} | (3.66) |
According to (3.65) and (3.66), we have
\begin{align*} &\|z\|^{4(p-1)}_{V} < \left(\frac{2(p+1)}{p-1}K_{0}\right)^{2(p-1)}e^{-2\lambda_{0}(p-1)t} \end{align*} |
and
\begin{align*} &\|\tilde{z}\|^{4(p-1)}_{V} < \left(\frac{2(p+1)}{p-1}K_{0}\right)^{2(p-1)}e^{-2\lambda_{0}(p-1)t}, \end{align*} |
which mean
\begin{align} &\left(\|z\|^{4(p-1)}_{V}+\|\tilde{z}\|^{4(p-1)}_{V}\right)^{\frac{1}{2}} < 2^{\frac{1}{2}}\left(\frac{2(p+1)}{p-1}K_{0}\right)^{p-1}e^{-\lambda_{0}(p-1)t}. \end{align} | (3.67) |
By substituting (3.67) into (3.64), we obtain
\begin{align} A_{3}+A_{4}\leq& C_{4}e^{-\lambda_{0}(p-1)t}\frac{1}{2}\|z-\tilde{z}\|^{2}_{V}+\frac{C}{2}\|z_{t}-\tilde{z}_{t}\|^{2}_{2}\\ \leq& C_{4}e^{-\lambda_{0}(p-1)t}\left(\frac{1}{2}\|z-\tilde{z}\|^{2}_{V}+\frac{1}{2}\|z_{t}-\tilde{z}_{t}\|^{2}_{2}\right)\\ &+\frac{C}{2}\|z_{t}-\tilde{z}_{t}\|^{2}_{2}. \end{align} | (3.68) |
Substituting (3.68) into (3.61) and using Hölder inequality and (2.5), we have
\begin{align} &\int_{0}^{L}\left(\mathcal{F}(z(t))-\mathcal{F}(\tilde{z}(t))\right)\cdot w_{t}{\rm d}x\\ \leq&C_{4}e^{-\lambda_{0}(p-1)t}\widehat{E}(t)+\frac{C}{2}\|z_{t}-\tilde{z}_{t}\|^{2}_{2}+\int_{0}^{L}C|z-\tilde{z}||u_{t}-\tilde{u}_{t}|{\rm d}x\\ &+\int_{0}^{L}C|z-\tilde{z}||\phi_{t}-\tilde{\phi}_{t}|{\rm d}x\\ \leq&C_{4}e^{-\lambda_{0}(p-1)t}\widehat{E}(t)+\frac{C}{2}\|z_{t}-\tilde{z}_{t}\|^{2}_{2}+C\|z-\tilde{z}\|_{2}\|u_{t}-\tilde{u}_{t}\|_{2}\\ &+C\|z-\tilde{z}\|_{2}\|\phi_{t}-\tilde{\phi}_{t}\|_{2}\\ \leq&C_{4}e^{-\lambda_{0}(p-1)t}\widehat{E}(t)+\frac{C}{2}\|z_{t}-\tilde{z}_{t}\|^{2}_{2}+2C\|z-\tilde{z}\|_{2}\|z_{t}-\tilde{z}_{t}\|_{2}\\ \leq&C_{4}e^{-\lambda_{0}(p-1)t}\widehat{E}(t)+\frac{C}{2}\|z_{t}-\tilde{z}_{t}\|^{2}_{2}+2CR_{2}^{\frac{1}{2}}\|z-\tilde{z}\|_{V}\|z_{t}-\tilde{z}_{t}\|_{2}. \end{align} | (3.69) |
According to (3.60), we know
\begin{align*} \|z_{t}-\tilde{z}_{t}\|_{2}\leq \left(2\widehat{E}(0)e^{\bar{M}Ct}\right)^{\frac{1}{2}}, \end{align*} |
i.e.,
\begin{align} \|z_{t}-\tilde{z}_{t}\|^{a}_{2}\leq \left(2\widehat{E}(0)\right)^{\frac{a}{2}}e^{\frac{a\bar{M}Ct}{2}} \end{align} | (3.70) |
for 0 < a < 1 . Meanwhile, combining (3.65) and (3.66), we also have
\begin{align} \|z_{t}-\tilde{z}_{t}\|_{2}\leq \|z_{t}\|_2+\|\tilde{z}_{t}\|_{2}\leq2\left(2K_{0}\right)^{\frac{1}{2}}e^{-\frac{\lambda_{0}}{2}t}, \end{align} | (3.71) |
i.e.,
\begin{align} \|z_{t}-\tilde{z}_{t}\|^{1-a}_{2}\leq2^{1-a}\left(2K_{0}\right)^{\frac{1-a}{2}}e^{-\frac{\lambda_{0}(1-a)}{2}t}, \end{align} | (3.72) |
and
\begin{align} \|z-\tilde{z}\|_{V}\leq \|z\|_{V}+\|\tilde{z}\|_{V}\leq2\left(\frac{2(p+1)K_{0}}{p-1}\right)^{\frac{1}{2}}e^{-\frac{\lambda_{0}}{2}t}. \end{align} | (3.73) |
Combining (3.70), (3.71) and (3.72), we have
\begin{align} \|z_{t}-\tilde{z}_{t}\|^{2}_{2} = &\|z_{t}-\tilde{z}_{t}\|_{2}\|z_{t}-\tilde{z}_{t}\|^{a}_{2}\|z_{t}-\tilde{z}_{t}\|^{1-a}_{2}\\ \leq&2^{2-a}\left(2K_{0}\right)^{\frac{2-a}{2}}\left(2\widehat{E}(0)\right)^{\frac{a}{2}}e^{-\frac{\lambda_{0}(2-a)-a\bar{M}C}{2}t}. \end{align} | (3.74) |
We choose 0 < a < \min\left\{\frac{2\lambda_{0}}{\bar{M}C+\lambda_{0}}, 1\right\} such that
\begin{align} \lambda_{0}(2-a)-a\bar{M}C > 0 \end{align} | (3.75) |
in (3.74). Meanwhile, according to (3.70), (3.72) and (3.73), we notice that
\begin{align} \|z-\tilde{z}\|_{V}\|z_{t}-\tilde{z}_{t}\|_{2} = &\|z-\tilde{z}\|_{V}\|z_{t}-\tilde{z}_{t}\|^{a}_{2}\|z_{t}-\tilde{z}_{t}\|^{1-a}_{2}\\ \leq&2^{2-a}\left(\frac{2(p+1)K_{0}}{p-1}\right)^{\frac{1}{2}}\left(2K_{0}\right)^{\frac{1-a}{2}}\left(2\widehat{E}(0)\right)^{\frac{a}{2}}e^{-\frac{\lambda_{0}(2-a)-a\bar{M}C}{2}t}. \end{align} | (3.76) |
Due to (3.74) and (3.76), we see that (3.69) turns to
\begin{align} &\int_{0}^{L}\left(\mathcal{F}(z(t))-\mathcal{F}(\tilde{z}(t))\right)\cdot w_{t}{\rm d}x\\ \leq&C_{4}e^{-\lambda_{0}(p-1)t}\widehat{E}(t)\\ &+2^{1-a}C\left(2K_{0}\right)^{\frac{2-a}{2}}\left(2\widehat{E}(0)\right)^{\frac{a}{2}}e^{-\frac{\lambda_{0}(2-a)-a\bar{M}C}{2}t}\\ &+2^{3-a}CR_{2}^{\frac{1}{2}}\left(\frac{2(p+1)K_{0}}{p-1}\right)^{\frac{1}{2}}\left(2K_{0}\right)^{\frac{1-a}{2}}\left(2\widehat{E}(0)\right)^{\frac{a}{2}}e^{-\frac{\lambda_{0}(2-a)-a\bar{M}C}{2}t}. \end{align} | (3.77) |
By substituting (3.77) into (3.43), we obtain
\begin{align} \widehat{E}(t)\leq&\widehat{E}(0)+C_{4}\int_{0}^{t}e^{-\lambda_{0}(p-1)\tau}\widehat{E}(\tau){\rm d}\tau\\ &+\left(2\widehat{E}(0)\right)^{\frac{a}{2}}D, \end{align} | (3.78) |
where
\begin{align} D: = N\int_{0}^{t}e^{-\lambda_{1} \tau}{\rm d}\tau = \frac{N}{\lambda_{1}}-\frac{N}{\lambda_{1}}e^{-\lambda_{1} t}. \end{align} | (3.79) |
Here, according to (3.79), we notice that D\leq\frac{N}{\lambda_{1}} , which means that (3.78) turns to
\begin{align} \widehat{E}(t)\leq&\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{a}{2}}\frac{N}{\lambda_{1}}+C_{4}\int_{0}^{t}e^{-\lambda_{0}(p-1)\tau}\widehat{E}(\tau){\rm d}\tau, \end{align} | (3.80) |
i.e.,
\begin{align} e^{-\lambda_{0}(p-1)t}\widehat{E}(t)\leq&e^{-\lambda_{0}(p-1)t}\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{a}{2}}\frac{N}{\lambda_{1}}\right)\\ &+C_{4}e^{-\lambda_{0}(p-1)t}\int_{0}^{t}e^{-\lambda_{0}(p-1)\tau}\widehat{E}(\tau){\rm d}\tau. \end{align} | (3.81) |
We define
\begin{align} F(t): = \int_{0}^{t}e^{-\lambda_{0}(p-1)\tau}\widehat{E}(\tau){\rm d}\tau. \end{align} | (3.82) |
Thus, we can rewrite (3.81) as
\begin{align} F^{\prime}(t)\leq&e^{-\lambda_{0}(p-1)t}\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{a}{2}}\frac{N}{\lambda_{1}}\right)\\ &+C_{4}e^{-\lambda_{0}(p-1)t}F(t). \end{align} | (3.83) |
By applying Gronwall's inequality, (3.83) gives
\begin{align*} F(t)\leq&\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{a}{2}}\frac{N}{\lambda_{1}}\right)e^{C_{4}\int_{0}^{t}e^{-\lambda_{0}(p-1)\tau}{\rm d}\tau}\int_{0}^{t}e^{-\lambda_{0}(p-1)\tau}{\rm d}\tau\nonumber\\ = &\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{a}{2}}\frac{N}{\lambda_{1}}\right)e^{\frac{C_{4}}{\lambda_{0}(p-1)}\left(1-e^{-\lambda_{0}(p-1)t}\right)} \frac{1-e^{-\lambda_{0}(p-1)t}}{\lambda_{0}(p-1)}\nonumber\\ \leq&\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{a}{2}}\frac{N}{\lambda_{1}}\right) \frac{e^{\frac{C_{4}}{\lambda_{0}(p-1)}}}{\lambda_{0}(p-1)}, \end{align*} |
which means (3.80) turns to
\begin{align} \widehat{E}(t)\leq&\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{a}{2}}\frac{N}{\lambda_{1}}\right)\left(1+\frac{C_{4}e^{\frac{C_{4}}{\lambda_{0}(p-1)}}}{\lambda_{0}(p-1)}\right). \end{align} | (3.84) |
For 0 < \rho < 1 , according to (3.84), we have
\begin{align} \widehat{E}(t) = & \widehat{E}(t)^{\rho}\widehat{E}(t)^{1-\rho}\\ \leq&\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{a}{2}}\frac{N}{\lambda_{1}}\right)^{\rho}\left(1+\frac{C_{4}e^{\frac{C_{4}}{\lambda_{0}(p-1)}}}{\lambda_{0}(p-1)}\right)^{\rho}\widehat{E}(t)^{1-\rho}. \end{align} | (3.85) |
Here, by using Young inequality, we know
\begin{align} \widehat{E}(t)^{1-\rho} = &\left(\frac{1}{2}\|z_{t}-\tilde{z}_{t}\|^{2}_{2}+\frac{1}{2}\|z-\tilde{z}\|^{2}_{V}\right)^{1-\rho}\\ \leq&\left(\frac{1}{2}\left(\|z_{t}\|_{2}+\|\tilde{z}_{t}\|_{2}\right)^{2}+\frac{1}{2}\left(\|z\|_{V}+\|\tilde{z}\|_{V}\right)^{2}\right)^{1-\rho}\\ = &\left(\frac{1}{2}\|z_{t}\|^{2}_{2}+\|z_{t}\|_{2}\|\tilde{z}_{t}\|_{2}+\frac{1}{2}\|\tilde{z}_{t}\|^{2}_{2}+\frac{1}{2}\|z\|^{2}_{V}+\|z\|_{V}\|\tilde{z}\|_{V}\right.\\ &\ \ \left.+\frac{1}{2}\|\tilde{z}\|_{V}^{2}\right)^{1-\rho}\\ \leq&\left(\|z_{t}\|^{2}_{2}+\|\tilde{z}_{t}\|_{2}^{2}+\|z\|^{2}_{V}+\|\tilde{z}\|_{V}^{2}\right)^{1-\rho} \end{align} | (3.86) |
According to (3.65) and (3.66), we know
\begin{align} &\frac{p-1}{2(p+1)}\left(\|z_{t}\|^{2}_{2}+\|z\|^{2}_{V}\right) < K_{0}e^{-\lambda_{0}t} \end{align} | (3.87) |
and
\begin{align} &\frac{p-1}{2(p+1)}\left(\|\tilde{z}_{t}\|^{2}_{2}+\|\tilde{z}\|^{2}_{V}\right) < K_{0}e^{-\lambda_{0}t}. \end{align} | (3.88) |
By substituting (3.87) and (3.88) into (3.86), we have
\begin{align*} \widehat{E}(t)^{1-\rho} \leq&\left(\frac{4(p+1)K_{0}}{p-1}\right)^{1-\rho}e^{-\lambda_{0}(1-\rho)t}, \end{align*} |
which means that (3.85) turns to (3.40).
In this section, we consider the continuous dependence of the global solution on the initial data for the nonlinear weak damping case of the model equations in problem (1.1) by supposing that m\geq1 , r\geq1 , and \hat{m} = \hat{r} = 1 in Assumption 2.1, which means that the weak damping terms g_j(s) , j = 1, 2 , take the nonlinear form for |s|\geq1 and linear form for |s| < 1 . These conditions are applied to improve the estimate (1.2) and reflect the decay property of (1.1), which was clearly clarified in Corollary 2.14 in [5], that is, the condition \hat{m} = \hat{r} = 1 is necessary to obtain the exponential decay of the energy, which helps to get the exponential decay, and the absence of such linear condition can only lead to the polynomial decay of the energy. Hence although we discuss the nonlinear weak damping case here, we still need to assume that the terms g_j(s) , j = 1, 2 , take the linear form for |s| < 1 .
Theorem 4.1. (Continuous dependence on initial data for nonlinear weak damping case) Let Assumption 2.1 and Assumption 2.2 hold with \hat{r} = \hat{m} = 1 , \mathcal{E}(z_{0}, z_{1}) < \mathcal{M}(s_0-\nu) , \mathcal{E}(\tilde{z}_{0}, \tilde{z}_{1}) < \mathcal{M}(s_0-\nu) , \|z_{0}\|_{V}\leq s_{0}-\nu , and \|\tilde{z}_{0}\|_{V}\leq s_{0}-\nu for some \nu > 0 . Let z = (u, \phi) and \tilde{z} = (\tilde{u}, \tilde{\phi}) are the global solutions to the problem (1.1) with the initial data z_{0} , z_{1} , and \tilde{z}_{0} , \tilde{z}_{1} , respectively, where \mathcal{M} and s_{0} are defined in (2.18) and (2.19), respectively. Then one has
\begin{align} \widehat{E}(t) \leq&C_{5}\left(\widehat{E}(0)+C_{6}\left(\widehat{E}(0)\right)^{\frac{b_0}{2}}\right)^{\kappa}e^{-C_{7}t}, \end{align} | (4.1) |
where
\begin{array}{c} 0 < \kappa < 1, \\ C_{5}: = \left(1+\frac{C_{8}Te^{\frac{C_{8}T}{\theta_{0}(p-1)}}}{\theta_{0}(p-1)}\right)^{\kappa}\left(\frac{4(p+1)e^{\theta+\tilde{\theta}}\hat{d}}{p-1}\right)^{1-\kappa}, \\ C_{6}: = 2^{\frac{b_0}{2}}\frac{N_{1}}{\lambda_{2}}, \\ C_{7}: = \frac{\theta_{0}(1-\kappa)}{T}, \\ C_{8}: = 4^{3}R^{\frac{1}{2}}_{4}R_{4(p-1)}^{\frac{1}{2}}C\left(\frac{2(p+1)\hat{d}}{p-1}e^{\theta+\tilde{\theta}}\right)^{p-1},\\ \theta_{0}: = \frac{\theta+\tilde{\theta}-|\theta-\tilde{\theta}|}{2} = \min\left\{\theta, \tilde{\theta}\right\}, \end{array} | (4.2) |
and \theta > 0 , \tilde{\theta} > 0 , and T > 0 satisfy
\begin{align} \mathcal{E}(z(t), z_{t}(t))\leq e^{\theta}\mathcal{E}(z_{0}, z_{1})e^{-\frac{\theta}{T}t} \end{align} | (4.3) |
and
\begin{align} \mathcal{E}(\tilde{z}(t), \tilde{z}_{t}(t))\leq e^{\tilde{\theta}}\mathcal{E}(\tilde{z}_{0}, \tilde{z}_{1})e^{-\frac{\tilde{\theta}}{T}t}, \end{align} | (4.4) |
\begin{align} b_0: = \frac{\theta_{0}}{\theta_{0}+\bar{M}CT}, \end{align} | (4.5) |
\bar{M} is defined in (3.42),
\begin{align*} N_{1}: = \left(8e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{2-b_0}{2}}\frac{C}{2}+2CR_{2}^{\frac{1}{2}}\left(8e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{1-b_0}{2}}\left(\frac{8(p+1)}{p-1} e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{1}{2}}, \end{align*} |
and
\begin{align*} \lambda_{2}: = &\frac{\theta_{0}(2-b_0)}{2T}-\frac{b_0\bar{M}C}{2}\nonumber\\ = &\frac{\theta_{0}(2-b_0)-b_0\bar{M}CT}{2T}. \end{align*} |
Proof. Due to Corollary 2.14 in [5], for any T > 0 , we know that there exist \theta and \tilde{\theta} to make (4.3) and (4.4) hold, where \theta is dependent on \mathcal{E}(z_{0}, z_{1}) and T , and \tilde{\theta} is dependent on \mathcal{E}(\tilde{z}_{0}, \tilde{z}_{1}) and T . According to Proposition 2.11 in [5], the assumptions \mathcal{E}(z_{0}, z_{1}) < \mathcal{M}(s_0-\nu) , \|z_{0}\|_{V}\leq s_{0}-\nu , and \mathcal{E}(\tilde{z}_{0}, \tilde{z}_{1}) < \mathcal{M}(s_0-\nu) , \|\tilde{z}_{0}\|_{V}\leq s_{0}-\nu give z_{0}\in W and \tilde{z}_{0}\in W , respectively. Here \mathcal{M}(s_0-\nu) < \hat{d} can be observed according to (2.17). Thus, we know (3.26) also holds. According to these facts and (2.16), we have
\begin{align} &\frac{1}{2}\|z_{t}\|^{2}_{2}+\frac{p-1}{2(p+1)}\|z\|^{2}_{V} < \mathcal{E}(z(t), z_{t}(t))\leq e^{\theta}\mathcal{E}(z_{0}, z_{1})e^{-\frac{\theta}{T}t} < e^{\theta}\hat{d} e^{-\frac{\theta}{T}t}, \end{align} | (4.6) |
and
\begin{align} &\frac{1}{2}\|\tilde{z}_{t}\|^{2}_{2}+\frac{p-1}{2(p+1)}\|\tilde{z}\|^{2}_{V} < \mathcal{E}(\tilde{z}(t), \tilde{z}_{t}(t))\leq e^{\tilde{\theta}}\mathcal{E}(\tilde{z}_{0}, \tilde{z}_{1})e^{-\frac{\tilde{\theta}}{T}t} < e^{\tilde{\theta}}\hat{d} e^{-\frac{\tilde{\theta}}{T}t}. \end{align} | (4.7) |
Due to (4.2), we know that (4.6) and (4.7) turn to
\begin{align} &\frac{1}{2}\|z_{t}\|^{2}_{2}+\frac{p-1}{2(p+1)}\|z\|^{2}_{V} < e^{\theta}\hat{d} e^{-\frac{\theta}{T}t} < e^{\theta+\tilde{\theta}}\hat{d} e^{-\frac{\theta_{0}}{T}t} \end{align} | (4.8) |
and
\begin{align} &\frac{1}{2}\|\tilde{z}_{t}\|^{2}_{2}+\frac{p-1}{2(p+1)}\|\tilde{z}\|^{2}_{V} < e^{\tilde{\theta}}\hat{d} e^{-\frac{\tilde{\theta}}{T}t} < e^{\theta+\tilde{\theta}}\hat{d} e^{-\frac{\theta_{0}}{T}t}, \end{align} | (4.9) |
respectively. According to (4.8) and (4.9), we have
\begin{align*} \|z\|^{4(p-1)}_{V} < &\left(\frac{2(p+1)\hat{d}}{p-1}e^{\theta+\tilde{\theta}}\right)^{2(p-1)}e^{-\frac{2\theta_{0}(p-1)}{T}t} \end{align*} |
and
\begin{align*} \|\tilde{z}\|^{4(p-1)}_{V} < &\left(\frac{2(p+1)\hat{d}}{p-1}e^{\theta+\tilde{\theta}}\right)^{2(p-1)}e^{-\frac{2\theta_{0}(p-1)}{T}t}, \end{align*} |
which mean
\begin{align} &\left(\|z\|^{4(p-1)}_{V}+\|\tilde{z}\|^{4(p-1)}_{V}\right)^{\frac{1}{2}} < \left(\frac{2(p+1)\hat{d}}{p-1}e^{\theta+\tilde{\theta}}\right)^{p-1}2^{\frac{1}{2}}e^{-\frac{\theta_{0}(p-1)}{T}t}. \end{align} | (4.10) |
Next, we need to use the estimate (3.64) to continue this proof. More precisely, by substituting (4.10) into (3.64), we obtain
\begin{align} A_{3}+A_{4}\leq& C_{8}e^{-\frac{\theta_{0}(p-1)}{T}t}\frac{1}{2}\|z-\tilde{z}\|^{2}_{V}+\frac{C}{2}\|w_{t}\|^{2}_{2}\\ \leq &C_{8}e^{-\frac{\theta_{0}(p-1)}{T}t}\left(\frac{1}{2}\|z-\tilde{z}\|^{2}_{V}+\frac{1}{2}\|z_{t}-\tilde{z}_{t}\|^{2}_{2}\right)+\frac{C}{2}\|w_{t}\|^{2}_{2}. \end{align} | (4.11) |
By substituting (4.11) into (3.61) and the similar process of obtaining (3.69), we have
\begin{align} &\int_{0}^{L}\left(\mathcal{F}(z(t))-\mathcal{F}(\tilde{z}(t))\right)\cdot w_{t}{\rm d}x\\ \leq & C_{8}e^{-\frac{\theta_{0}(p-1)}{T}t}\widehat{E}(t)+\frac{C}{2}\|w_{t}\|^{2}_{2}\\ &+2C\|z-\tilde{z}\|_{2}\|z_{t}-\tilde{z}_{t}\|_{2}\\ \leq & C_{8}e^{-\frac{\theta_{0}(p-1)}{T}t}\widehat{E}(t)+\frac{C}{2}\|w_{t}\|^{2}_{2}\\ &+2CR_{2}^{\frac{1}{2}}\|z-\tilde{z}\|_{V}\|z_{t}-\tilde{z}_{t}\|_{2}. \end{align} | (4.12) |
According to (3.60), we know
\begin{align*} \|z_{t}-\tilde{z}_{t}\|_{2}\leq \left(2\widehat{E}(0)e^{\bar{M}Ct}\right)^{\frac{1}{2}}, \end{align*} |
i.e.,
\begin{align} \|z_{t}-\tilde{z}_{t}\|^{b_0}_{2}\leq \left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}e^{\frac{b_0\bar{M}Ct}{2}}, \end{align} | (4.13) |
where b_0 is defined by (4.5). Meanwhile, combining (4.8) and (4.9), we know
\begin{align} \|z_{t}-\tilde{z}_{t}\|_{2}\leq \|z_{t}\|_2+\|\tilde{z}_{t}\|_{2}\leq\left(8e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{1}{2}}e^{-\frac{\theta_{0}}{2T}t}, \end{align} | (4.14) |
i.e.,
\begin{align} \|z_{t}-\tilde{z}_{t}\|^{1-b_0}_{2}\leq\left(8e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{1-b_0}{2}}e^{-\frac{\theta_{0}(1-b_0)}{2T}t}. \end{align} | (4.15) |
and
\begin{align} \|z-\tilde{z}\|_{V}\leq \|z\|_{V}+\|\tilde{z}\|_{V}\leq \left(\frac{8(p+1)}{p-1}e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{1}{2}}e^{-\frac{\theta_{0}}{2T}t}, \end{align} | (4.16) |
where b_0 > 0 and 1-b_0 > 0 are ensured by (4.5). According to (4.13), (4.14) and (4.15), we have
\begin{align} \|z_{t}-\tilde{z}_{t}\|^{2}_{2} = &\|z_{t}-\tilde{z}_{t}\|_{2}\|z_{t}-\tilde{z}_{t}\|^{b_0}_{2}\|z_{t}-\tilde{z}_{t}\|^{1-b_0}_{2}\\ \leq&\left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}\left(8e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{2-b_0}{2}}e^{-\left(\frac{\theta_{0}(2-b_0)}{2T}-\frac{b_0\bar{M}C}{2}\right)t}. \end{align} | (4.17) |
According to (4.5), we have
\begin{align} 0 < b_0 < \frac{2\theta_{0}}{\theta_{0}+\bar{M}CT}, \end{align} | (4.18) |
i.e.,
\begin{align*} \frac{\theta_{0}(2-b_0)}{2T}-\frac{b_0\bar{M}C}{2} > 0 \end{align*} |
in (4.17). Meanwhile, according to (4.13), (4.15) and (4.16), we notice that
\begin{align} \|z-\tilde{z}\|_{V}\|z_{t}-\tilde{z}_{t}\|_{2} = &\|z-\tilde{z}\|_{V}\|z_{t}-\tilde{z}_{t}\|^{b_0}_{2}\|z_{t}-\tilde{z}_{t}\|^{1-b_0}_{2}\\ \leq&\left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}\left(8e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{1-b_0}{2}}\left(\frac{8(p+1)}{p-1}e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{1}{2}}\\ &\ \ e^{-\left(\frac{\theta_{0}(2-b_0)}{2T}-\frac{b_0\bar{M}C}{2}\right)t}. \end{align} | (4.19) |
Due to (4.17) and (4.19), we know that (4.12) turns to
\begin{align} &\int_{0}^{L}\left(\mathcal{F}(z(t))-\mathcal{F}(\tilde{z}(t))\right)\cdot w_{t}{\rm d}x\\ \leq&C_{8}e^{-\frac{\theta_{0}(p-1)}{T}t}\widehat{E}(t)+\left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}\left(8e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{2-b_0}{2}}\frac{Ce^{-\left(\frac{\theta_{0}(2-b_0)}{2T}-\frac{b_0\bar{M}C}{2}\right)t}}{2}\\ &+2CR_{2}^{\frac{1}{2}}\left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}\left(8e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{1-b_0}{2}}\left(\frac{8(p+1)}{p-1}e^{\theta+\tilde{\theta}}\hat{d}\right)^{\frac{1}{2}}e^{-\left(\frac{\theta_{0}(2-b_0)}{2T}-\frac{b_0\bar{M}C}{2}\right)t}. \end{align} | (4.20) |
By substituting (4.20) into (3.43), we obtain
\begin{align} \widehat{E}(t)\leq&\widehat{E}(0)+C_{8}\int_{0}^{t}e^{-\frac{\theta_{0}(p-1)}{T}\tau}\widehat{E}(\tau){\rm d}\tau+\left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}D_{1}, \end{align} | (4.21) |
where
\begin{align} D_{1}: = N_{1}\int_{0}^{t}e^{-\lambda_{2} \tau}{\rm d}\tau = \frac{N_{1}}{\lambda_{2}}-\frac{N_{1}}{\lambda_{2}}e^{-\lambda_{2} t}. \end{align} | (4.22) |
Here, according to (4.22), we notice that D_{1}\leq\frac{N_{1}}{\lambda_{2}} , which means that (4.21) turns to
\begin{align} \widehat{E}(t)\leq&\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}\frac{N_{1}}{\lambda_{2}}+C_{8}\int_{0}^{t}e^{-\frac{\theta_{0}(p-1)}{T}\tau}\widehat{E}(\tau){\rm d}\tau, \end{align} | (4.23) |
i.e.,
\begin{align} e^{-\frac{\theta_{0}(p-1)}{T}t}\widehat{E}(t)\leq&e^{-\frac{\theta_{0}(p-1)}{T}t}\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}\frac{N_{1}}{\lambda_{2}}\right)\\ &+C_{8}e^{-\frac{\theta_{0}(p-1)}{T}t}\int_{0}^{t}e^{-\frac{\theta_{0}(p-1)}{T}\tau}\widehat{E}(\tau){\rm d}\tau. \end{align} | (4.24) |
By similar process of obtaining (3.84), we have
\begin{align} \widehat{E}(t)\leq&\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}\frac{N_{1}}{\lambda_{2}}\right)\left(1+\frac{C_{8}Te^{\frac{C_{8}T}{\theta_{0}(p-1)}}}{\theta_{0}(p-1)}\right). \end{align} | (4.25) |
For 0 < \kappa < 1 , according to (4.25), we know
\begin{align} \widehat{E}(t) = & \widehat{E}(t)^{\kappa}\widehat{E}(t)^{1-\kappa}\\ \leq&\left(\widehat{E}(0)+\left(2\widehat{E}(0)\right)^{\frac{b_0}{2}}\frac{N_{1}}{\lambda_{2}}\right)^{\kappa}\left(1+\frac{C_{8}Te^{\frac{C_{8}T}{\theta_{0}(p-1)}}}{\theta_{0}(p-1)}\right)^{\kappa}\widehat{E}(t)^{1-\kappa}. \end{align} | (4.26) |
By the similar process of obtaining (3.86), we have
\begin{align} \widehat{E}(t)^{1-\kappa} \leq&\left(\|z_{t}\|^{2}_{2}+\|\tilde{z}_{t}\|_{2}^{2}+\|z\|^{2}_{V}+\|\tilde{z}\|_{V}^{2}\right)^{1-\kappa}. \end{align} | (4.27) |
According to (4.8) and (4.9), we know
\begin{align} &\frac{p-1}{2(p+1)}\left(\|z_{t}\|^{2}_{2}+\|z\|^{2}_{V}\right) < e^{\theta+\tilde{\theta}}\hat{d}e^{-\frac{\theta_{0}}{T}t} \end{align} | (4.28) |
and
\begin{align} &\frac{p-1}{2(p+1)}\left(\|\tilde{z}_{t}\|^{2}_{2}+\|\tilde{z}\|^{2}_{V}\right) < e^{\theta+\tilde{\theta}}\hat{d}e^{-\frac{\theta_{0}}{T}t}. \end{align} | (4.29) |
By substituting (4.28) and (4.29) into (4.27), we have
\begin{align*} \widehat{E}(t)^{1-\kappa} \leq&\left(\frac{4(p+1)e^{\theta+\tilde{\theta}}\hat{d}}{p-1}\right)^{1-\kappa}e^{-\frac{\theta_{0}(1-\kappa)}{T}t}, \end{align*} |
which means that (4.26) turns to (4.1).
The finite time blowup at the positive initial energy level was established for the linear weak damping case and nonlinear weak damping case in [22], and for the linear weak damping case, the lower and upper bounds of the blowup time were also estimated there. Hence in this section, we shall estimate the lower bound of the blowup time at the positive initial energy level for the nonlinear weak damping case.
Theorem 5.1. (Lower bound of blowup time for positive initial energy and nonlinear weak damping case) Let Assumption 2.1 and Assumption 2.2 hold, and \mathcal{E}(z_{0}, z_{1})\geq 0 . Suppose z(x, t) is the solution to problem (1.1). If z(x, t) blows up at a finite time T_{0} , then we have the estimate of blowup time
T_{0} \geq \int_{G(0)}^\infty\frac{1}{C_{9}y^{p}+C_{10}y+C_{11}}{\rm d}y, |
where
\begin{align*} \begin{split} C_{9}&: = (p+1)R_{2p}2^{2p-2}M^{p}, \\ C_{10}&: = (p+1)M, \\ C_{11}&: = (p+1)\mathcal{E}(z_{0}, z_{1})+(p+1)R_{2p}2^{2p-2}\left(\mathcal{E}(z_{0}, z_{1})\right)^{p}, \end{split} \end{align*} |
and
G(0): = \|z_{0}\|^{p+1}_{p+1}. |
Proof. Let z = (u, \phi) be a weak solution to problem (1.1). We suppose that such solution blows up at a finite time T_{0} . Our goal is to obtain an estimate of the lower bound of T_{0} .
For t\in [0, T_{0}) , we define
\begin{align} G(t): = \|z(t)\|^{p+1}_{p+1} = \|u(t)\|^{p+1}_{p+1}+\|\phi(t)\|^{p+1}_{p+1}, \end{align} | (5.1) |
then, by Hölder inequality and Young inequality, we have
\begin{align} G^{'}(t) = &(p+1)\int_{0}^{L}|u|^{p-1}uu_{t}{\rm d}x+(p+1)\int_{0}^{L}|\phi|^{p-1}\phi\phi_{t}{\rm d}x\\ \leq&(p+1)\int_{0}^{L}|u|^{p}|u_{t}|{\rm d}x+(p+1)\int_{0}^{L}|\phi|^{p}|\phi_{t}|{\rm d}x\\ \leq&(p+1)\|u\|_{2p}^{p}\|u_{t}\|_{2}+(p+1)\|\phi\|_{2p}^{p}\|\phi_{t}\|_{2}\\ \leq&\frac{p+1}{2}\left( \|u\|_{2p}^{2p}+\|u_{t}\|^{2}_{2}+\|\phi\|_{2p}^{2p}+\|\phi_{t}\|^{2}_{2}\right)\\ = &\frac{p+1}{2}\left( \|z\|_{2p}^{2p}+\|z_{t}\|_{2}^{2}\right). \end{align} | (5.2) |
Next task is to estimate the terms in the last line of (5.2). By (2.14) and (2.16), we obtain
\begin{align} \mathcal{E}(z(t), z_{t}(t)) = &\frac{1}{2}\|z_{t}\|_{2}^{2}+\frac{1}{2}\|z\|_{V}^{2}-\int_{0}^{L}F(z(t)){\rm d}x\\ \geq&\frac{1}{2}\|z_{t}\|_{2}^{2}+\frac{1}{2}\|z\|_{V}^{2}-M\int_{0}^{L}\left(|u|^{p+1}+|\phi|^{p+1}\right){\rm d}x\\ = &\frac{1}{2}\|z_{t}\|_{2}^{2}+\frac{1}{2}\|z\|_{V}^{2}-M\|z\|^{p+1}_{p+1}. \end{align} | (5.3) |
According to (3.16), we know
\begin{align} \mathcal{E}(z(t), z_{t}(t))\leq \mathcal{E}(z_{0}, z_{1}), \ t\in[0, T_{0}), \end{align} | (5.4) |
where \mathcal{E}(z_{0}, z_{1})\geq 0 . We notice that (5.3) and (5.4) give
\begin{align} \|z_{t}\|_{2}^{2}+\|z\|_{V}^{2}\leq2\mathcal{E}(z_{0}, z_{1})+2MG(t), \end{align} | (5.5) |
which means
\begin{align} \begin{split} \|z\|_{V}^{2}\leq2\mathcal{E}(z_{0}, z_{1})+2MG(t), \end{split} \end{align} | (5.6) |
and
\begin{align} \begin{split} \|z_{t}\|_{2}^{2}\leq2\mathcal{E}(z_{0}, z_{1})+2MG(t). \end{split} \end{align} | (5.7) |
Combining (2.5) and (5.6), we see
\begin{align} \|z\|^{2p}_{2p}\leq R_{2p}\left(2\mathcal{E}(z_{0}, z_{1})+2MG(t)\right)^{p}. \end{align} | (5.8) |
By substituting (5.7) and (5.8) into (5.2), we have
\begin{align} \begin{split} G^{'}(t)\leq& \frac{(p+1)R_{2p}}{2}\left(2\mathcal{E}(z_{0}, z_{1})+2MG(t)\right)^{p} +(p+1)\left(\mathcal{E}(z_{0}, z_{1})+MG(t)\right). \end{split} \end{align} | (5.9) |
We consider the function h(x): = x^{p}, x > 0, p > 1 . Since h^{''}(x) = p(p-1)x^{p-2} > 0 , h(x) is a convex function. Thus it gives that
h \left( \frac{\tilde{k}_{1}+\tilde{k}_{2}}{2} \right) \leq \frac{1}{2}h(\tilde{k}_{1})+\frac{1}{2}h(\tilde{k}_{2}), \ \ \tilde{k}_1, \tilde{k}_2\geq 0, |
that is to say
(\tilde{k}_{1}+\tilde{k}_{2})^{p}\leq 2^{p-1}(\tilde{k}_{1}^{p}+\tilde{k}_{2}^{p}). |
Then, due to \mathcal{E}(z_{0}, z_{1})\geq0 and G(t)\geq0 , we can get
\begin{align} \left(2\mathcal{E}(z_{0}, z_{1})+2MG(t)\right)^{p} \leq 2^{p-1} \left(\left(2\mathcal{E}(z_{0}, z_{1})\right)^{p}+\left(2MG(t)\right)^{p}\right), \end{align} | (5.10) |
which means that (5.9) turns to
\begin{align*} G^{'}(t)\leq& (p+1)R_{2p}2^{2p-2}M^{p}\left(G(t)\right)^{p}+(p+1)MG(t)+(p+1)\mathcal{E}(z_{0}, z_{1})\nonumber\\ &+(p+1)R_{2p}2^{2p-2}\left(\mathcal{E}(z_{0}, z_{1})\right)^{p}, \end{align*} |
i.e.,
\begin{align} \frac{G^{'}(t)}{C_{9}\left(G(t)\right)^{p}+C_{10}G(t)+C_{11}}\leq1. \end{align} | (5.11) |
Recalling the assumption that the solution of problem (1.1) blows up in finite time T_{0} , we have
\begin{align} \lim\limits_{t\rightarrow {T_{0}}}G(t) = \lim\limits_{t\rightarrow {T_{0}}}\|z(t)\|^{p+1}_{p+1} = \infty. \end{align} | (5.12) |
Then, integrating both sides of (5.11) on (0, T_{0}) and combining (5.12), we get
\int_{G(0)}^\infty\frac{1}{C_{9}y^{p}+C_{10}y+C_{11}}{\rm d}y\leq T_{0}. |
Thus, the proof of Theorem 5.1 is completed.
In Sept Ⅰ of the proofs of Theorem 3.2 , by the classical form of Gronwall's inequality (integral form) shown in Appendix B.2 of [4], we know that (3.59) gives
\begin{align} \widehat{E}(t)\leq \widehat{E}(0)(1+\bar{M}Cte^{\bar{M}Ct}). \end{align} | (6.1) |
In (6.1), the growth order of the distance of the solutions, i.e., \widehat{E}(t) , is controlled by the product of an exponential function and a polynomial function, which is higher than that in (1.2) established for the local solution. In Sept Ⅱ of the proofs of Theorem 3.2 , in order to build the growth estimate of \widehat{E}(t) in the same form as (1.2) for the global solution, i.e., (3.60), we need the following variation of Gronwall's inequality.
Proposition 6.1. For a nonnegative, summable function \zeta(t) on [0, \bar{T}] with satisfying
\begin{align} \zeta(t)\leq \bar{C}_{1}\int_{0}^{t}\zeta(\tau){\rm d}\tau+\bar{C}_{2} \end{align} | (6.2) |
for the constants \bar{C}_{1}, \bar{C}_{2}\geq0 , one has
\begin{align} \zeta(t)\leq \bar{C}_{2}e^{\bar{C}_{1}t} \end{align} | (6.3) |
for a.e. 0\leq t\leq \bar{T} .
Proof. We use the similar idea of proving the classical form of Gronwall's inequality shown by Appendix B in [4] to give the proofs. We first define the auxiliary function
\begin{align} \chi(t): = e^{-\bar{C}_{1}t}\int_{0}^{t}\zeta(\tau){\rm d}\tau. \end{align} | (6.4) |
By direct calculation, we have
\begin{align} \chi^{\prime}(t) = e^{-\bar{C}_{1}t}\left(\zeta(t)-\bar{C}_{1}\int_{0}^{t}\zeta(\tau){\rm d}\tau\right). \end{align} | (6.5) |
Substituting (6.2) into (6.5), we have
\begin{align*} \chi^{\prime}(t)\leq e^{-\bar{C}_{1}t}\bar{C}_{2}, \end{align*} |
which means
\begin{align*} \int_{0}^{t}\chi^{\prime}(\tau){\rm d}\tau\leq \int_{0}^{t}e^{-\bar{C}_{1}\tau}\bar{C}_{2}{\rm d}\tau, \end{align*} |
i.e.,
\begin{align} \chi(t)\leq \frac{\bar{C}_{2}}{\bar{C}_{1}}\left(1-e^{-\bar{C}_{1}t}\right). \end{align} | (6.6) |
According to (6.4) and (6.6), we have
\begin{align} \int_{0}^{t}\zeta(\tau){\rm d}\tau\leq \frac{\bar{C}_{2}}{\bar{C}_{1}}\left(e^{\bar{C}_{1}t}-1\right). \end{align} | (6.7) |
Substituting (6.7) into (6.2), we obtain (6.3).
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Runzhang Xu was supported by the National Natural Science Foundation of China (12271122) and the Fundamental Research Funds for the Central Universities. Chao Yang was supported by the Ph.D. Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities (3072022GIP2403).
The authors declare there is no conflict of interest.
[1] | Nelson EB, Guillot D (2006) Well cementing , Sugar Land: Schlumberger. |
[2] |
Kjøller C, Torsæter M, Lavrov A, et al. (2016) Novel experimental/numerical approach to evaluate the permeability of cement-caprock systems. Int J Greenh Gas Con 45: 86–93. doi: 10.1016/j.ijggc.2015.12.017
![]() |
[3] |
Bullard JW, Jennings HM, Livingston RA, et al. (2011) Mechanisms of cement hydration. Cement Concrete Res 41: 1208–1223. doi: 10.1016/j.cemconres.2010.09.011
![]() |
[4] |
Van Breugel K (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory. Cement Concrete Res 25: 319–331. doi: 10.1016/0008-8846(95)00017-8
![]() |
[5] |
Thomas JJ, Biernacki JJ, Bullard JW, et al. (2011) Modeling and simulation of cement hydration kinetics and microstructure development. Cement Concrete Res 41: 1257–1278. doi: 10.1016/j.cemconres.2010.10.004
![]() |
[6] |
Bentur A, Diamond S, Mindess S (1985) The microstructure of the steel fibre-cement interface. J Mater Sci 20: 3610–3620. doi: 10.1007/BF01113768
![]() |
[7] |
Zhu X, Gao Y, Dai Z, et al. (2018) Effect of interfacial transition zone on the Young's modulus of carbon nanofiber reinforced cement concrete. Cement Concrete Res 107: 49–63. doi: 10.1016/j.cemconres.2018.02.014
![]() |
[8] |
Scrivener KL, Crumbie AK, Laugesen P (2004) The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete. Interf Sci 12: 411–421. doi: 10.1023/B:INTS.0000042339.92990.4c
![]() |
[9] |
Zhu W, Bartos PJM (2000) Application of depth-sensing microindentation testing to study of interfacial transition zone in reinforced concrete. Cement Concrete Res 30: 1299–1304. doi: 10.1016/S0008-8846(00)00322-7
![]() |
[10] |
Torsæter M, Todorovic J, Lavrov A (2015) Structure and debonding at cement–steel and cement–rock interfaces: Effect of geometry and materials. Constr Build Mater 96: 164–171. doi: 10.1016/j.conbuildmat.2015.08.005
![]() |
[11] |
Lavrov A, Panduro EAC, Torsæter M (2017) Synchrotron study of cement hydration: Towards computed tomography analysis of interfacial transition zone. Energy Procedia 114: 5109–5117. doi: 10.1016/j.egypro.2017.03.1666
![]() |
[12] |
Dance SL, Maxey MR (2003) Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J Comput Phys 189: 212–238. doi: 10.1016/S0021-9991(03)00209-2
![]() |
[13] | Kim S, Karrila SJ (2005) Microhydrodynamics: principles and selected applications , Mineola: Dover Publications. |
[14] | Lavrov A, Laux H (2007) DEM modeling of particle restitution coefficient vs Stokes number: The role of lubrication force. 6th International Conference on Multiphase Flow, ICMF 2007, Leipzig, Germany. |
[15] |
Lavrov A, Gawel K, Torsæter M (2016) Manipulating cement-steel interface by means of electric field: Experiment and potential applications. AIMS Mater Sci 3: 1199–1207. doi: 10.3934/matersci.2016.3.1199
![]() |
[16] |
Weitkamp T, Haas D, Wegrzynek D, et al. (2011) ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Radiat 18: 617–629. doi: 10.1107/S0909049511002895
![]() |
[17] |
Hodne H, Saasen A (2000) The effect of the cement zeta potential and slurry conductivity on the consistency of oil-well cement slurries. Cement Concrete Res 30: 1767–1772. doi: 10.1016/S0008-8846(00)00417-8
![]() |
[18] |
Nachbaur L, Nkinamubanzi PC, Nonat A, et al. (1998) Electrokinetic properties which control the coagulation of silicate cement suspensions during early age hydration. J Colloid Interf Sci 202: 261–268. doi: 10.1006/jcis.1998.5445
![]() |
[19] | Westermeier R (2016) Electrophoresis in practice: a guide to methods and applications of DNA and protein separations , John Wiley & Sons. |
[20] | Yang M, Neubauer CM, Jennings HM (1997) Interparticle potential and sedimentation behavior of cement suspensions. Adv Cement Based Mater 5: 1–7. |
1. | Zin Win Thu, Dasom Kim, Junseok Lee, Woon-Jae Won, Hyeon Jun Lee, Nan Lao Ywet, Aye Aye Maw, Jae-Woo Lee, Multivehicle Point-to-Point Network Problem Formulation for UAM Operation Management Used with Dynamic Scheduling, 2022, 12, 2076-3417, 11858, 10.3390/app122211858 | |
2. | Jiaming Su, Minghua Hu, Yingli Liu, Jianan Yin, A Large Neighborhood Search Algorithm with Simulated Annealing and Time Decomposition Strategy for the Aircraft Runway Scheduling Problem, 2023, 10, 2226-4310, 177, 10.3390/aerospace10020177 | |
3. | Ben Tian, Zhaogang Xie, Wei Peng, Jun Liu, Application Analysis of Multi-Intelligence Optimization Decision-Making Method in College Students’ Ideological and Political Education System, 2022, 2022, 1939-0122, 1, 10.1155/2022/8999757 | |
4. | Jian Yang, Xuejun Huang, Intelligent Planning Modeling and Optimization of UAV Cluster Based on Multi-Objective Optimization Algorithm, 2022, 11, 2079-9292, 4238, 10.3390/electronics11244238 | |
5. | Jun Tang, Wanting Qin, Qingtao Pan, Songyang Lao, A Deep Multimodal Fusion and Multitasking Trajectory Prediction Model for Typhoon Trajectory Prediction to Reduce Flight Scheduling Cancellation, 2024, 35, 1004-4132, 666, 10.23919/JSEE.2024.000042 | |
6. | Yingli Liu, Minghua Hu, Jiaming Su, Estimation Distributed Algorithm to Aid Aircraft Runway Scheduling Problem, 2023, 2491, 1742-6588, 012007, 10.1088/1742-6596/2491/1/012007 | |
7. | Hao Jiang, Weili Zeng, Wenbin Wei, Xianghua Tan, A bilevel flight collaborative scheduling model with traffic scenario adaptation: An arrival prior perspective, 2024, 161, 03050548, 106431, 10.1016/j.cor.2023.106431 | |
8. | Xiuhua Teng, Li Wang, Ruipeng Yu, Qichen Wu, Jun Qin, Wenjin Yu, 2024, Analysis of obstacle superelevation in airport clearance area based on Cesium, 9781510672949, 58, 10.1117/12.3024498 | |
9. | Wentao Zhou, Jinlin Wang, Longtao Zhu, Yi Wang, Yulong Ji, Flight Arrival Scheduling via Large Language Model, 2024, 11, 2226-4310, 813, 10.3390/aerospace11100813 | |
10. | Philipp Zeunert, Efficient Aircraft Arrival Sequencing Given Airport Gate Assignment, 2023, 31, 2380-9450, 184, 10.2514/1.D0350 | |
11. | Jingheng Zhang, Minghua Wang, Haochen Shi, Yingzhuo Zhang, 2023, Dynamic Optimal Scheduling Model of Multi Runway Flight Arrival and Departure Based on Improved Genetic Algorithm, 979-8-3503-1331-4, 203, 10.1109/ICNETIC59568.2023.00049 | |
12. | Chaoyu Xia, Yi Wen, Minghua Hu, Hanbing Yan, Changbo Hou, Weidong Liu, Microscopic-Level Collaborative Optimization Framework for Integrated Arrival-Departure and Surface Operations: Integrated Runway and Taxiway Aircraft Sequencing and Scheduling, 2024, 11, 2226-4310, 1042, 10.3390/aerospace11121042 | |
13. | Kejia Chen, Tengkuan Situ, Yunfei Fang, An improved multi-objective restart variable neighborhood search algorithm for aircraft sequencing problem with complex interdependent runways, 2025, 127, 09696997, 102807, 10.1016/j.jairtraman.2025.102807 |