Processing math: 87%
Research article Topical Sections

Modulation of the mechanical properties of ventricular extracellular matrix hydrogels with a carbodiimide crosslinker and investigation of their cellular compatibility

  • Hydrogels made from the cardiac extracellular matrix (ECM) as two-dimensional (2D) or 3D cell-culture substrates have beneficial biochemical effects on the differentiation of stem cells into cardiomyocytes. The mechanical properties of the substrates that match those of the host tissues have been identified as critical biophysical cues for coaxing the tissue-specific differentiation of stem cells. The objectives of the present study are (1) to fabricate hydrogels comprising pure ventricular ECM (vECM), (2) to make the gels possess mechanical properties similar to those of the decellularized ventricular tissue, and (3) to evaluate the cellular compatibility of the hydrogels. In order to achieve these aims, (1) a simplified protocol was developed to produce vECM solution easily and rapidly, (2) N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDAC) was chosen to crosslink the hydrogels made from the vECM solution to enhance their mechanical properties and stabilize the microstructure of the gels, (3) rat embryonic fibroblasts or cardiomyocytes were cultured on these gels to determine the cellular compatibility of the gels. In particular, the nonlinearity and viscoelasticity of the gels were characterized quantitatively using a newly proposed nonlinear Kelvin model. The results showed that EDAC treatment allowed modulation of the mechanical properties of the gels to the same level as those of decellularized ventricular tissue in terms of the equilibrium elasticity and relaxation coefficient. Cell culture confirmed the cellular compatibility of the gels. Furthermore, an empirical relationship between the equilibrium elastic modulus of the gels and the vECM and EDAC concentrations was derived, which is important to tailor the mechanical properties of the gels. Finally, the influence of the mechanical properties of the gels on the behavior of cultured fibroblasts and cardiomyocytes was discussed.

    Citation: Kyohei Fujita, Zhonggang Feng, Daisuke Sato, Tadashi Kosawada, Takao Nakamura, Yasuyuki Shiraishi, Mitsuo Umezu. Modulation of the mechanical properties of ventricular extracellular matrix hydrogels with a carbodiimide crosslinker and investigation of their cellular compatibility[J]. AIMS Materials Science, 2018, 5(1): 54-74. doi: 10.3934/matersci.2018.1.54

    Related Papers:

    [1] Baojun Song, Wen Du, Jie Lou . Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1651-1668. doi: 10.3934/mbe.2013.10.1651
    [2] Jiaxin Nan, Wanbiao Ma . Stability and persistence analysis of a microorganism flocculation model with infinite delay. Mathematical Biosciences and Engineering, 2023, 20(6): 10815-10827. doi: 10.3934/mbe.2023480
    [3] Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033
    [4] Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024
    [5] Guangming Qiu, Zhizhong Yang, Bo Deng . Backward bifurcation of a plant virus dynamics model with nonlinear continuous and impulsive control. Mathematical Biosciences and Engineering, 2024, 21(3): 4056-4084. doi: 10.3934/mbe.2024179
    [6] Zehan Liu, Daoxin Qiu, Shengqiang Liu . A two-group epidemic model with heterogeneity in cognitive effects. Mathematical Biosciences and Engineering, 2025, 22(5): 1109-1139. doi: 10.3934/mbe.2025040
    [7] Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś . Gompertz model with delays and treatment: Mathematical analysis. Mathematical Biosciences and Engineering, 2013, 10(3): 551-563. doi: 10.3934/mbe.2013.10.551
    [8] Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337
    [9] Ya-Dong Zhang, Hai-Feng Huo, Hong Xiang . Dynamics of tuberculosis with fast and slow progression and media coverage. Mathematical Biosciences and Engineering, 2019, 16(3): 1150-1170. doi: 10.3934/mbe.2019055
    [10] Haifeng Zhang, Jinzhi Lei . Optimal treatment strategy of cancers with intratumor heterogeneity. Mathematical Biosciences and Engineering, 2022, 19(12): 13337-13373. doi: 10.3934/mbe.2022625
  • Hydrogels made from the cardiac extracellular matrix (ECM) as two-dimensional (2D) or 3D cell-culture substrates have beneficial biochemical effects on the differentiation of stem cells into cardiomyocytes. The mechanical properties of the substrates that match those of the host tissues have been identified as critical biophysical cues for coaxing the tissue-specific differentiation of stem cells. The objectives of the present study are (1) to fabricate hydrogels comprising pure ventricular ECM (vECM), (2) to make the gels possess mechanical properties similar to those of the decellularized ventricular tissue, and (3) to evaluate the cellular compatibility of the hydrogels. In order to achieve these aims, (1) a simplified protocol was developed to produce vECM solution easily and rapidly, (2) N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDAC) was chosen to crosslink the hydrogels made from the vECM solution to enhance their mechanical properties and stabilize the microstructure of the gels, (3) rat embryonic fibroblasts or cardiomyocytes were cultured on these gels to determine the cellular compatibility of the gels. In particular, the nonlinearity and viscoelasticity of the gels were characterized quantitatively using a newly proposed nonlinear Kelvin model. The results showed that EDAC treatment allowed modulation of the mechanical properties of the gels to the same level as those of decellularized ventricular tissue in terms of the equilibrium elasticity and relaxation coefficient. Cell culture confirmed the cellular compatibility of the gels. Furthermore, an empirical relationship between the equilibrium elastic modulus of the gels and the vECM and EDAC concentrations was derived, which is important to tailor the mechanical properties of the gels. Finally, the influence of the mechanical properties of the gels on the behavior of cultured fibroblasts and cardiomyocytes was discussed.


    The harmful use of alcohol causes a large disease, social and economic burden in societies. In 2012, about 3.3 million deaths, or 5.9% of all global deaths, were attributable to alcohol consumption. Alcohol consumption can have an impact not only on the incidence of diseases, injuries and other health conditions, but also on the course of disorders and their outcomes in individuals [1]. According to a research report by the Shanghai Institute of Environmental Economics, the number of patients due to alcoholism has increased by 28.5 times, and the number of deaths has increased by 30.6 times in the past seven years [2]. Thus, it is very important to study drinking behavior.

    Recently, many authors have studied mathematical models of drinking [3,4,5,6,7,8,9]. Bani et al. [3] studied the influence of environmental factors on college alcohol drinking patterns. Mulone et al. [4] developed a two-stage (four compartments) model for youths with serious drinking problems and their treatment, and the stability of all the equilibria was obtained. Mushayabasa et al. [5] formulated a deterministic model for evaluating the impact of heavy alcohol drinking on the reemerging gonorrhea epidemic. Lee et al. [6] studied the optimal control intervention strategies in low- and high-risk problem drinking populations. Mubayi et al. [7] studied the impact of relative residence times on the distribution of heavy drinkers in highly distinct environments and found that alcohol consumption is a function of social dynamics, environmental contexts, individuals' preferences and family history. Huo, Chen and Xiang [8] introduced a more realistic binge drinking model with time delay, in which time delay is used to represent the time lag of the immunity against drinking. Xiang, Liu and Huo [9] proposed a new SAIRS alcoholism model with birth and death on complex heterogeneous networks.

    Media coverage is one of the effective ways to control alcoholism or infectious diseases, many authors have studied alcoholism or epidemic models with media coverage [10,11,12,13,14]. Cui et al. [10] developed a three dimensional compartmental model to investigate the impact of media coverage to the spread and control of infectious diseases. Pawelek et al. [11] studied the impact of twitter on influenza epidemics. Huo and Zhang [12] introduced a more realistic mathematical influenza model including dynamics of Twitter, which might reduce and increase the spread of influenza. Huo and Zhang [13] formulated a novel alcoholism model which involved impact of Twitter and investigated the occurrence of backward, forward bifurcation and Hopf bifurcation. Huo and Yang [14] introduced a novel SEIS epidemic model with the impact of media. Above results show that media coverage can regard as a good indicator in controlling the emergence and spread of the epidemic disease or alcoholism. Many scholars have done a lot of researches on drinking or infectious diseases with or without media coverage [15,16,17,18,19,20,21,22].

    Alcoholism can be defined as a pattern of alcohol use that compromises the health and safety of oneself and others. There are a variety of treatment methods currently available, such as behavioral treatments, medications and mutual-support Groups [23]. The goal of a person pursuing treatment is to abstain from alcohol or to cut back on drinking. Many people have studied the epidemic or alcoholism models with treatment [24,25,26].

    Motivated by the above [13,14], we set up a new alcoholism model with treatment and effect of Twitter in this paper. We derive the basic reproductive number of the model and study the stability of our model. Furthermore, we investigate the occurrence of backward and forward bifurcation.

    The organization of this paper is as follows: In Section 2, we present a new alcoholism model with treatment and effect of Twitter. In Section 3, we derive the basic reproductive number and study the stability of all equilibria. We also study the occurrence of backward and forward bifurcation. In Section 4, we perform some numerical simulations to illustrate and extend our main results. Sensitivity analysis and some discussion are given in last section.

    The total population in this model is divided into four compartments: S(t), L(t), H(t), R(t). S(t) represents the number of moderate drinkers, that is, the people who do not drink or drink within daily and weekly limits [13]. L(t) represents the number of light problem drinkers, that is, the drinkers who drink beyond daily or weekly ceiling [13]. H(t) represents the number of heavy problem drinkers, that is, the drinkers who drink far more than daily and weekly limits [13]. R(t) represents the number of quitting drinkers, that is, the people who quit problem drinking by treatment permanently. T(t) represents the number of messages that Twitter provide about alcoholism at time t. The total number of population at time t is given by

    N(t)=S(t)+L(t)+H(t)+R(t).

    The population flowing among those compartments is shown in the following diagram (Figure 1).

    Figure 1.  Flowchart of the alcoholism model with the influence of Twitter.

    The diagram leads to the following system of ordinary differential equations:

    {dSdt=Λ+qHβSHeαTα1S,dLdt=βSHeαTρLα1L,dHdt=ρLγHqH(α1+α2)H,dRdt=γHα1R,dTdt=μ1S+μ2L+μ3H+μ4RτT. (2.1)

    Where all the parameters are positive constants and Λ is the recruitment rate of the population. α1 is the natural death rate. α2 is the alcoholism-related death rate. β is the rate of transmission between moderate drinkers and heavy problem drinkers, and it is reduced by a factor eαT due to the behavior change of the public after reading information about alcoholism. α is the coefficient that determines how effective the drinking information can reduce the transmission rate. τ is outdated-rate of tweets. ρ is the transmission rate from the light problem drinkers to the heavy problem drinkers. After treatment, the transfer rate of the heavy problem drinkers to the moderate drinkers is q, the transfer rate of the heavy problem drinkers to the quitting drinkers is γ. μi(i=1,2,3,4) are the rates that moderate drinkers, light problem drinkers, heavy problem drinkers and quitting drinkers may tweet about alcoholism during an alcoholism occasion, respectively.

    Adding the first four equations of system (2.1), we have

    dNdt=dSdt+dLdt+dHdt+dRdt=Λα1Nα2HΛα1N.

    Then it follows that limtsupN(t)Λα1.

    According to the fifth equation of system (2.1), we obtain

    dTdt=μ1S+μ2L+μ3H+μ4RτTΛ(μ1+μ2+μ3+μ4)α1τT,

    then it follows that limtsupT(t)Λ(μ1+μ2+μ3+μ4)α1τ, so the set is

    Ω={(S,L,H,R,T)R5+:0S,L,H,RNΛα1,0TΛ(μ1+μ2+μ3+μ4)α1τ}. (2.2)

    Therefore, we will consider the global stability of system (2.1) on the set Ω.

    It is easy to see that system (2.1) always has a alcohol free equilibrium P0=(S0,L0,H0,R0,T0), where

    S0=Λα1,L0=0,H0=0,R0=0,T0=Λμ1α1τ.

    By applying the method of the next generation matrix in [27], we obtain the basic reproduction number R0. System (2.1) can be written as

    dxdt=F(x)V(x),

    where x=(L,S,H,R,T)T,

    F(x)=(βSHeαT0000),and V(x)=(ρL+α1LΛqH+βSHeαT+α1SρL+qH+γH+(α1+α2)HγH+α1Rμ1Sμ2Lμ3Hμ4R+τT).

    The Jacobian matrices of F(x) and V(x) at the alcohol free equilibrium P0 are

    DF(P0)=(00Λβα1eαμ1Λα1τ0000000000000000000000),

    and

    DV(P0)=(ρ+α100000α1Λβα1eαμ1Λα1τq00ρ0α1+α2+q+γ0000γα10μ2μ1μ3μ4τ).

    Therefore, the basic reproduction number R0 is

    R0=Λβρeαμ1Λα1τα1(α1+ρ)(α1+α2+q+γ). (3.1)

    Theorem 1. When R0<1 and T(t)Λμ1α1τ, the alcohol free equilibrium P0 of system (2.1) is globally asymptotically stable; When R0<1 and T(t)<Λμ1α1τ, the alcohol free equilibrium P0 of system (2.1) is locally asymptotically stable; When R0>1, the alcohol free equilibrium P0 of system (2.1) is unstable.

    Proof. The characteristic equation of the system (2.1) at the alcohol free equilibrium P0 is

    |λ+α10Λβα1eαμ1Λα1τq000λ+(α1+ρ)Λβα1eαμ1Λα1τ000ρλ+(α1+α2+q+γ)0000γλ+α10μ1μ2μ3μ4λ+τ|=0. (3.2)

    Therefore, Eq.(3.2) can be written as

    (λ+τ)(λ+α1)2[(λ+(α1+ρ))(λ+(α1+α2+q+γ))Λβρα1eαμ1Λα1τ]=0. (3.3)

    Therefore, the three eigenvalues of the Eq.(3.2) are λ1=τ, λ2=α1, λ3=α1, and the other eigenvalues are determined by the equation

    (λ+(α1+ρ))(λ+(α1+α2+q+γ))Λβρα1eαμ1Λα1τ=0. (3.4)

    Therefore, the Eq.(3.4) can be written as

    λ2+λ(2α1+α2+q+γ+ρ)+(α1+ρ)(α1+α2+q+γ)(1R0)=0. (3.5)

    By Viete theorem, we have

    λ4+λ5=(2α1+α2+q+γ+ρ)<0,

    and

    λ4λ5=(α1+ρ)(α1+α2+q+γ)(1R0).

    Thus, when R0<1, the alcohol free equilibrium P0 is locally asymptotically stable; when R0>1, the alcohol free equilibrium P0 is unstable.

    Define the Lyapunov function

    M(S,L,H,R,T)=ρL(t)+(α1+ρ)H(t).

    It is clear that M(t)0 and the equality holds if and only if L(t)=H(t)=0. Differentiating M(S,L,H,R,T) and from the Eq.(2.2), we obtain S(t)Λα1. Therefore, when T(t)Λμ1α1τ, we have

    dM(S,L,H,R,T)dt=ρdL(t)dt+(α1+ρ)dH(t)dt=ρ(βSHeαT(α1+ρ)L)+(α1+ρ)(ρL(α1+α2+γ+q)H)=[ρβSeαT(α1+ρ)(α1+α2+γ+q)]H[Λβρα1eαμ1Λα1τ(α1+ρ)(α1+α2+γ+q)]H=(α1+ρ)(α1+α2+γ+q)H[Λβρeαμ1Λα1τα1(α1+ρ)(α1+α2+γ+q)1]=(α1+ρ)(α1+α2+γ+q)H[R01]. (3.6)

    It follows that M(S,L,H,R,T) is bounded and non-increasing. Thus, limtM(S,L,H,R,T) exists. Note that R0<1 guarantees that dM(S,L,H,R,T)dt0 for all t0. Consequently, for system (2.1) there holds

    limtL(t)=0,limtH(t)=0.

    Hence, by LaSalle's Invariance Principle [28], the alcohol free equilibrium is globally attractive. We show that the alcohol free equilibrium P0 is globally asymptotic stability when R0<1.

    Theorem 2. (Ⅰ) When θ=0 and R0>1, the system (2.1) has a unique positive alcoholism equilibrium P0;

    (Ⅱ)When θ0 and R0>max{R01,1}, the system (2.1) has a unique positive alcoholism equilibrium P1;

    (Ⅲ)When R02=R0<min{R01,1}, the system (2.1) has a unique positive alcoholism equilibrium P2;

    (Ⅳ)When R02<R0<min{R01,1}, the system (2.1) has two different positive alcoholism equilibria P3 and P4.

    Proof. Assuming the right-hand sides of system (2.1) is 0, we have

    {Λ+qHβSHeαTα1S=0,βSHeαTρLα1L=0,ρLγHqH(α1+α2)H=0,γHα1R=0,μ1S+μ2L+μ3H+μ4RτT=0. (3.7)

    Let (S,L,H,R,T)=(S,L,H,R,T) be the solution of Eq.(3.7), we have

    {Λ+qHβSHeαTα1S=0,βSHeαTρLα1L=0,ρLγHqH(α1+α2)H=0,γHα1R=0,μ1S+μ2L+μ3H+μ4RτT=0. (3.8)

    By Eq.(3.8), we obtain

    S=Λα1+[ρq(α1+ρ)(α1+α2+γ+q)]Hα1ρ, (3.9)
    L=(α1+α2+γ+q)Hρ, (3.10)
    R=γHα1, (3.11)
    T=Λμ1α1τ+Hα1ρτ[μ1qρμ1(α1+ρ)(α1+α2+q+γ)+α1μ2(α1+α2+q+γ)+α1μ3ρ+γμ4ρ]. (3.12)

    Combine the above Eqs.(3.9)-(3.12) and the first equation of Eq.(3.8), we have

    [1θHR01]R0=eθH, (3.13)

    where

    R01=Λρθ(α1+ρ)(α1+α2+q+γ)ρq, (3.14)

    and

    θ=α[μ1qρμ1(α1+ρ)(α1+α2+q+γ)+α1μ2(α1+α2+q+γ)+α1μ3ρ+γμ4ρ]α1ρτ. (3.15)

    For the sake of simplicity, we define

    R02=R01e1R01. (3.16)

    In what follows, we assume

    F(H)=R0R0R01θHeθH. (3.17)

    Thus

    F(H)=θeθHR0R01θ, (3.18)
    F(H)=θ2eθH. (3.19)

    The following work is to discuss the properties of Eq.(3.17).

    (Ⅰ) When θ=0 and R0>1, the existence of the unique alcoholism equilibrium P0 of system (2.1) can be obtained by Eq.(3.13), as shown in line L4 of Figure 2, where

    H0=Λρ(α1+ρ)(α1+α2+q+γ)ρq(11R0),S0=Λα1Λα1(11R0),L0=Λ(α1+α2+q+γ)(α1+ρ)(α1+α2+q+γ)ρq(11R0),R0=Λγρα1[(α1+ρ)(α1+α2+q+γ)ρq](11R0),T0=Λμ1α1τ+Λα1τ[(α1+ρ)(α1+α2+q+γ)ρq][μ1qρ+α1μ3ρ+γμ4ρ+α1μ2(α1+α2+q+γ)μ1(α1+ρ)(α1+α2+q+γ)](11R0).
    Figure 2.  The regions for the existence of alcoholism equilibrium of system (2.1).

    (Ⅱ) When θ0 and R0>1, we have F(0)=R01>0 and F()=<0. Assume that F(H)<θ(1R0R01). Thus, when θ>0 and R0>R01 or θ<0, we obtain F(H)<0. Therefore, there is a unique positive solution for Eq.(3.17). Thus, the alcoholism equilibrium P1=(S1,L1,H1,R1,T1) can be obtained, as shown in regions ΩA and ΩB of Figure 2.

    (Ⅲ) When θ>0 and R0<1, we have F(0)=R01<0, F()=<0 and F(H)<0. Assume that F(H)=θeθHR0R01θ=θ(eθHR0R01). If F(H)=0, Eq.(3.17) has the unique positive solution H2=1θln(R01R0) when R0<R01. Meanwhile, we also have

    F(H2)=R0R0R01θH2eθH2=0.

    Therefore, we obtain R0=R02=R01e(1R01). Thus, the alcoholism equilibrium P2=(S2,L2,H2,R2,T2) can be obtained, as shown in line L2 of Figure 2.

    (Ⅳ) When R02<R0<1, we have F(H2)>0. Eq.(3.17) has two different positive solutions H3 and H4, where H3 and H4 satisfy the following condition H3<H2<H4. Thus, the alcoholism equilibria P3=(S3,L3,H3,R3,T3) and P4=(S4,L4,H4,R4,T4) can be obtained, as shown in region ΩE of Figure 2.

    Remark 1. For simplicity, the six curves (Li,i=1,2,3,4,5,6) divide the space in which R0 and θ are located into seven regions as shown in Figure 2.

    L1:R0=R01(θ),withR0>1,L2:R0=R01(θ)e1R01(θ),withR0<min{R01(θ),1},L3:θ=0,withR0<1,L4:θ=0,withR0>1,L5:R0=R01(θ)e1R01(θ),withR01(θ)<R0<1,L6:R0=1.

    In this section, we study the local stability of the alcoholism equilibria Pi(i=0,1,2,3,4). First we obtain the characteristic matrix of system (2.1) at the alcoholism equilibria Pi(i=0,1,2,3,4), as follows

    |λ+βHieαTi+α10βSieαTiq0αβSiHieαTiβHieαTiλ+(α1+ρ)βSieαTi0αβSiHieαTi0ρλ+(α1+α2+q+γ)0000γλ+α10μ1μ2μ3μ4λ+τ|=0. (3.20)

    In order to simplify Eq.(3.20), we have

    Φ=βeαTi=α1(α1+ρ)(α1+α2+γ+q)eαTiΛρeΛαμ1α1τR0=α1(α1+ρ)(α1+α2+γ+q)eθHiΛρR0,
    ΦSi=(α1+ρ)(α1+α2+γ+q)ρ=ΛθR01+q.

    Then the characteristic equation can be rewritten as:

    (λ+α1)G(λ)=0, (3.21)
    G(λ)=λ4+a1(Hi)λ3+a2(Hi)λ2+a3(Hi)λ+a4(Hi)=0, (3.22)

    where

    a1(Hi)=3α1+α2+q+γ+ρ+τ+HiΦ, (3.23)
    a2(Hi)=(2α1+α2+q+γ+ρ+τ)(α1+HiΦ)+(2α1+α2+q+γ+ρ)τ+αHi(ΛθR01+q)(μ2μ1), (3.24)
    a3(Hi)=(2α1+α2+q+γ+ρ)(α1+HiΦ)τ+(α1+α2+q+γ)α1HiΦ+(α1+α2+γ)ρHiΦ+αHi(ΛθR01+q)[(2α1+α2+q+γ)(μ2μ1)+ρ(μ3μ1)], (3.25)
    a4(Hi)=τ(α1+ρ)(α1+α2+q+γ)[(α1+HiΦ)α1(1+Hiθ)]. (3.26)

    Theorem 3. For system (2.1), we assume that μ1=μ2=μ3=μ4.

    (Ⅰ) When θ=0,α2=0 and R0>1(i.e.,L4), the alcoholism equilibrium P0 is locally asymptotically stable;

    (Ⅱ)When θ0, R0>max{1,R01}(i.e.,ΩA, and ΩB), Φ>α1θ and τ>ρ, the alcoholism equilibrium P1 is locally asymptotically stable;

    (Ⅲ)When R02=R0<min{1,R01}(i.e.,L2), the alcoholism equilibrium P2 may be locally stable or not;

    (Ⅳ)(ⅰ)When R02<R0<min{1,R01}(i.e.,ΩE), the alcoholism equilibrium P3 is unstable,

    (ⅱ)When R02<R0<min{1,R01}(i.e.,ΩE) and τ>ρ, the alcoholism equilibrium P4 is locally asymptotically stable.

    Proof. (Ⅰ)When θ=0, applying to the proof of (Ⅰ) of Theorem 2. We linearize the system (2.1) and evaluate the characteristic equation at the alcoholism equilibrium P0, and get

    |λ+βH0eαT0+α10βS0eαT0q0αβS0H0eαT0βH0eαT0λ+(α1+ρ)βS0eαT00αβS0H0eαT00ρλ+(α1+q+γ)0000γλ+α10μ1μ1μ1μ1λ+τ|=0.

    Thus, the characteristic equation can be rewritten as:

    (λ+α1)(λ+τ)G1(λ)=0,
    G1(λ)=λ3+b1λ2+b2λ+b3=0,

    where

    b1=3α1+q+γ+ρ+H0Φ,b2=(2α1+q+γ+ρ)(α1+H0Φ),b3=[(α1+ρ)(α1+γ)+α1q]H0Φ.

    It is clear that b1>0, b2>0 and b3>0. Applying RouthHurwitz [13], by assuming that B=b1b2b3. Then, we obtain

    B=(2α1+q+γ+ρ)(H0Φ)2+(7α12+5α1q+5α1γ+5α1ρ+q2+2qγ+2qρ+γ2+γρ+ρ2)(H0Φ)+6α13+5α12q+5α12γ+5α12ρ+α1q2+2α1qγ+2α1qρ+α1γ2+2α1γρ+α1ρ2>0

    Hence, the alcoholism equilibrium P0 is locally asymptotically stable.

    (Ⅱ)When μ1=μ2=μ3=μ4 and Φ>α1θ, by Eqs.(3.23)-(3.26), we have

    a1(H1)=3α1+α2+q+γ+ρ+τ+H1Φ>0,a2(H1)=(2α1+α2+q+γ+ρ+τ)(α1+H1Φ)+(2α1+α2+q+γ+ρ)τ>0,a3(H1)=(2α1+α2+q+γ+ρ)(α1+H1Φ)τ+(α1+α2+q+γ)α1H1Φ+(α1+α2+γ)ρH1Φ>0,a4(H1)=τ(α1+ρ)(α1+α2+q+γ)[(α1+H1Φ)α1(1+H1θ)]>0.

    Applying RouthHurwitz [13], let C=a1a2a3. Then, we obtain

    C=c1H12+c2H1+c3>0,

    where

    c1=2Φ2α1+Φ2α2+Φ2γ+Φ2q+Φ2ρ+Φ2τ>0,c2=7Φα12+Φα22+Φγ2+Φq2+Φρ2+Φτ2+5Φα1α2+5Φα1γ+2Φα2γ+5Φα1q+2Φα2q+5Φα1ρ+Φα2ρ+6Φα1τ+2Φqρ+2Φqτ+2Φρτ+Φγρ+2Φγq+2Φα2τ+2Φγτ>0,c3=α1α22+5α12α2+α1γ2+5α12γ+α1q2+5α12q+α1ρ2+5α12ρ+9α12τ+α2τ2+α22τ+γτ2+γ2τ+qτ2+q2τ+ρτ2+ρ2τ+2α1α2q+2α1α2ρ+6α1α2τ+2α1γq+2α1γρ+6α1γτ+6α1qτ+2α2qτ+6α1ρτ+2α2ρτ+2γqτ+2γρτ+2qρτ+2α1qρ+3α1τ2+6α13+2α1α2γ+2α2γτ>0.

    Then, let D=a3[a1a2a3]a21a4, and get

    D=d1H12+d2H1+d3,

    It is clear that D>0 and di>0(i=1,2,3), when τ>ρ. Because the expression of di(i=1,2,3) are too long, we list them in Appendix. Hence, the alcoholism equilibrium P1 is locally asymptotically stable.

    (Ⅲ)Applying to the proof of (Ⅲ) of Theorem 2, when H2=1θln(R01R0), we obtain Φ=α1θ. Thus, by Eq.(3.26), we have

    a4(H2)=τ(α1+ρ)(α1+α2+q+γ)[(α1+H2Φ)α1(1+H2θ)]=0,

    and by Eq.(3.23), we have

    a1(H2)=3α1+α2+q+γ+ρ+τ+H2Φ>0.

    Thus, we know that Eq.(3.21) has negative and zero eigenvalues. Therefore, the alcoholism equilibrium P2 may be locally stable or not.

    (Ⅳ)(ⅰ)Applying to the proof of (Ⅳ) of Theorem 2, when H3<H2=1θln(R01R0), we obtain Φ<α1θ. Thus, by Eq.(3.26), we have

    a4(H3)=τ(α1+ρ)(α1+α2+q+γ)[(α1+H3Φ)α1(1+H3θ)]<0,

    and by Eq.(3.23), we have

    a1(H3)=3α1+α2+q+γ+ρ+τ+H3Φ>0.

    Assuming g1(H3),g2(H3),g3(H3),g4(H3) is the root of Eq.(3.22), and we assume that the real parts satisfying Re(g1(H3))Re(g2(H3))Re(g3(H3))Re(g4(H3)), so we obtain

    g1(H3)+g2(H3)+g3(H3)+g4(H3)=a1(H3)<0,

    and

    g1(H3)g2(H3)g3(H3)g4(H3)=a4(H3)<0.

    There are Re(g1(H3))<0 and Re(g4(H3))>0, thus, the alcoholism equilibrium P3 is unstable.

    (ⅱ) When H4>H2=1θln(R01R0), we obtain Φ>α1θ. Thus, by Eq.(3.26), we have

    a4(H4)=τ(α1+ρ)(α1+α2+q+γ)[(α1+H4Φ)α1(1+H4θ)]>0.

    By μ1=μ2=μ3=μ4, we have

    a1(H4)=3α1+α2+q+γ+ρ+τ+H4Φ>0,a2(H4)=(2α1+α2+q+γ+ρ+τ)(α1+H4Φ)+(2α1+α2+q+γ+ρ)τ>0,a3(H4)=(2α1+α2+q+γ+ρ)(α1+H4Φ)τ+(α1+α2+q+γ)α1H4Φ+(α1+α2+γ)ρH4Φ>0.

    Applying RouthHurwitz [13], by assuming that E=a1a2a3. Then, we obtain

    E=e1H42+e2H4+e3>0,

    where

    e1=2Φ2α1+Φ2α2+Φ2γ+Φ2q+Φ2ρ+Φ2τ>0,e2=7Φα12+Φα22+Φγ2+Φq2+Φρ2+Φτ2+5Φα1α2+5Φα1γ+2Φγq+Φγρ+5Φα1q+2Φα2γ+5Φα1ρ+2Φα2q+Φα2ρ+6Φα1τ+2Φα2τ+2Φγτ+2Φqρ+2Φqτ+2Φρτ>0,e3=5α12α2+α1α22+α1γ2+5α12γ+α1q2+5α12q+α1ρ2+5α12ρ+3α1τ2+9α12τ+α2τ2+α22τ+γτ2+γ2τ+qτ2+q2τ+ρτ2+ρ2τ+6α13+2α1α2γ+2α1α2q+2α1α2ρ+6α1α2τ+2α1γq+2α1γρ+6α1γτ+2α2γτ+2α1qρ+2α2qτ+6α1qτ+6α1ρτ+2α2ρτ+2γρτ+2γqτ+2qρτ>0.

    Then, by assuming that F=a3[a1a2a3]a21a4, and get

    F=f1H42+f2H4+f3,

    It is clear that D>0, when fi>0(i=1,2,3) and τ>ρ. Because the expression of fi(i=1,2,3) are too long, we do not list it here, and it is placed in Appendix. Hence, the alcoholism equilibrium P4 is locally asymptotically stable.

    In this section, we study the change of the parameter β causing a forward or a backward bifurcation to occur.

    Theorem 4. (Ⅰ) If R01>1, when R0=1, the system (2.1) appears a backward bifurcation.

    (Ⅱ) If R01<1, when R0=1, the system (2.1) appears a forward bifurcation.

    Proof. Using the central manifold theory described in [29]. Introducing x1=S, x2=L, x3=H, x4=R, x5=T, the system (2.1) becomes

    {dx1dt=Λ+qx3βx1x3eαx5α1x1:=f1,dx2dt=βx1x3eαx5ρx2α1x2:=f2,dx3dt=ρx2γx3qx3(α1+α2)x3:=f3,dx4dt=γx3α1x4:=f4,dx5dt=μ1x1+μ2x2+μ3x3+μ4x4τx5:=f5. (3.27)

    Thus, the alcohol free equilibrium P0 is

    P0=X0=(Λα1,0,0,0,Λμ1α1τ),

    In view of Theorem 4.1 [29], the Jacobian matrix J(P0) of the system (3.27) in the alcohol free equilibrium is

    J(X0)=(α10qΛβα1eαμ1Λα1τ000(α1+ρ)Λβα1eαμ1Λα1τ000ρ(α1+α2+q+γ)0000γα10μ1μ2μ3μ4τ).

    We establish the local stability of alcohol free equilibrium taking β as bifurcation parameter, when R0=1 corresponding to β=β=α1(α1+ρ)(α1+α2+q+γ)eΛαμ1α1τΛρ, thus, we obtain

    J(X0)=(α10qα1(α1+ρ)(α1+α2+q+γ)ρ000(α1+ρ)α1(α1+ρ)(α1+α2+q+γ)ρ000ρ(α1+α2+q+γ)0000γα10μ1μ2μ3μ4τ).

    It is clear that 0 is a simple eigenvalue of J(P0). Therefore, there is a right eigenvector associated with 0 eigenvalues that is R=(r1,r2,r3,r4,r5)T, there is a left eigenvector associated with 0 eigenvalues is L=(l1,l2,l3,l4,l5), and it is required to satisfy LR=1.

    Therefore, the right eigenvector is

    R=(α1(α1+α2+q+γ)ρ(α1+α2+γ)α1ρα1+α2+q+γρ1γα1(μ1μ2)(α1+α2+q+γ)ρτ(α1μ1α1μ3+α2μ1+γμ1γμ4)α1τ),

    the left eigenvector is

    L=(0,ρ2α1+α2+q+γ+ρ,α1+ρ2α1+α2+q+γ+ρ,0,0).

    In view of Theorem 4.1 [29], we know that

    a=5k,i,j=1lkrirj2fk(X0)xixj,b=5k,i=1lkri2fk(X0)xiβ.

    Therefore, we obtain

    a=l2r1r32f2(X0)x1x3+l2r3r12f2(X0)x3x1+l2r3r52f2(X0)x3x5+l2r5r32f2(X0)x5x3=2l2(r1r32f2(X0)x1x3+r3r52f2(X0)x3x5)=2ρΛαβeΛαμ1α1τα1(2α1+α2+q+γ+ρ)[α1(μ2μ1)(α1+α2+q+γ)ρ(α1μ1α1μ3+α2μ1+γμ1γu4)α1ρτ]+2ρβeΛαμ1α1τ2α1+α2+q+γ+ρ[(α1+ρ)(α1+α2+γ)α1qα1ρ]=2[α1(α1+ρ)(α1+α2+q+γ)2+ρ(α1+ρ)(α1+α2+γ)(α1+α2+q+γ)Λρ(2α1+α2+q+γ+ρ)](R011).b=l2r32f2(X0)x3β=ΛρeΛαμ1α1τα1(2α1+α2+q+γ+ρ)>0.

    According to Theorem 4.1 of [29], we notice that the coefficient b is always positive. The coefficient a is positive when R01>1. In this case, the direction of the bifurcation of the system (2.1) at R0=1 is backward, as shown in the Figure 9(a). The coefficient a is negative when R01<1. Under this circumstance, the direction of the bifurcation of the system (2.1) at R0=1 is forward, as shown in the Figure 9(b).

    Figure 9.  (a) Illustration of backward bifurcation when one parameter β in R0 is varied. (b) Illustration of forward bifurcation when one parameter β in R0 is varied.

    The goal of this section is to present some numerical simulations which complement the theoretical results in the previous sections. We choose some parameters based on the Table 1.

    Table 1.  The parameters description of the alcoholism model.
    Parameter Description Value Source
    Λ The constant recruitment rate of the population 0.70.8day1 [30]
    β Transmission coefficient from the moderate drinkers
    compartment to the light problem drinkers compartment 0.00990.9person1 Estimate
    α The coefficient that determines how effective the positive
    drinking information can reduce the transmission rate 0.000910.8tweet1 Estimate
    ρ Transmission coefficient from the light problem drinkers
    compartment to the heavy problem drinkers compartment 0.040.99day1 Estimate
    μ1 The rates that the moderate drinkers may tweet
    about alcoholism during an alcoholism occasion 01day1 [11]
    μ2 The rates that the light problem drinkers may tweet
    about alcoholism during an alcoholism occasion 01day1 [11]
    μ3 The rates that the heavy problem drinkers may tweet
    about alcoholism during an alcoholism occasion 01day1 [11]
    μ4 The rates that quitting drinkers may tweet
    about alcoholism during an alcoholism occasion 01day1 [13]
    α1 The natural death rate of the population 0.0090.6year1 [4,5]
    α2 The death rate due to heavy alcoholism 0.020.5day1 Estimate
    q Transmission coefficient from the heavy problem drinkers
    compartment to the moderate drinkers compartment 0.0060.99day1 Estimate
    γ Transmission coefficient from the heavy problem drinkers
    compartment to quitting drinkers compartment 0.0060.99day1 Estimate
    τ The rate that message become outdated 0.030.6year1 [11]

     | Show Table
    DownLoad: CSV

    As an example, we choose a set of the following parameters, the parameter values are Λ=0.8,α=0.007,α1=0.009,α2=0.5,μ1=0.04,μ2=0.8,μ3=0.8,μ4=0.8,γ=0.1,q=0.07,ρ=0.09,τ=0.03 and β=0.001. It follows from Theorem 1 that the alcohol free equilibrium P0=(88.89,0,0,0,118.52) of system (2.1) is globally asymptotically stable for any value of time t when R0=0.0519<1 (see Figure 3 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium P(t) changes as t increasing and eventually tends to P0=(88.89,0,0,0,118.52) from Figure 3 (a) and (b).

    Figure 3.  Alcohol free equilibrium P0 of system (2.1) is globally asymptotically stable.

    In order to verify the local stability of the alcoholism equilibrium P1, we choose a set of the following parameters, the parameter values are Λ=0.8,α=0.007,α1=0.009,α2=0.5,μ1=0.04,μ2=0.04,μ3=0.04,μ4=0.04,γ=0.1,q=0.07,ρ=0.09,τ=0.03 and β=0.004. It follows from Theorem 3 that the alcoholism equilibrium P1=(28.16,6.09,0.81,8.97,58.71) of system (2.1) is locally asymptotically stable for any value of time t when R0=2.0765>max{1,R01}, where R01=0.6128 (see Figure 4 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium P(t) changes with t increasing and eventually tends to P1=(28.16,6.09,0.81,8.97,58.71) from Figure 4 (a) and (b).

    Figure 4.  Alcoholism equilibrium P1 of system (2.1) is locally asymptotically stable.

    In order to verify the local stability of the alcoholism equilibrium P4, we choose a set of the following parameters, the parameter values are Λ=8,α=0.07,α1=0.003,α2=0.005,μ1=0.025,μ2=0.025,μ3=0.025,μ4=0.025,γ=0.01,q=0.07,ρ=0.4,τ=0.45 and β=0.9. It follows from Theorem 3 that the alcoholism equilibrium P4=(254.1677,85.2877,387.8429,1292.7081,112.2223) of system (2.1) is locally asymptotically stable for any value of time t when R02<R0<max{1,R01}, where R01=2.7788, R0=0.8486 and R02=0.4692 (see Figure 5 (a) and (b)). Furthermore, we can also observe that the value of the equilibrium P(t) changes with t increasing and eventually tends to P4=(254.1677,85.2877,387.8429,1292.7081,112.2223) from Figure 5 (a) and (b).

    Figure 5.  Alcoholism equilibrium P4 of system (2.1) is locally asymptotically stable.

    Then, we choose a set of the following parameters, the parameter values are Λ=0.8,α=0.007,α1=0.009,α2=0.5,μ1=0,μ2=0.008,μ3=0.8,μ4=0.8,γ=0.1,q=0.99,ρ=0.99,τ=0.03 and β=0.0204. It follows from Theorem 3 that the alcoholism equilibrium P1=(49.19,0.92,0.57,6.37,185.30) of system (2.1) is locally asymptotically stable for any value of time t when R0=1.1238>max{1,R01} and β<β, where R01=2.9044 and β=0.021 (see Figure 6 (a) and (b)).

    Figure 6.  Alcoholism equilibrium P1 of system (2.1) is locally asymptotically stable when β<β.

    If we choose β as 0.076 (see Figure 7 (a) and (b)), we have more intricate dynamic behaviors on system (2.1). As an example, we choose a set of the following parameters, the parameter values are Λ=0.8,α=0.00626,α1=0.009,α2=0.4,μ1=0.009,μ2=0.004,μ3=0.8,μ4=0.8,γ=0.1,q=0.06,ρ=0.9,τ=0.03 and β=0.076. The alcoholism equilibrium P1 of system (2.1) occurs a Hopf bifurcation when R0=9.9478>1 and β>β, where β=0.011 (see Figure 7 (a-d)). In Figure 7 (a-d), we can readily see that the solution curves of system (2.1) perform a sustained periodic oscillation and phase trajectories approaches limit cycle.

    Figure 7.  Alcoholism equilibrium P1 of system (2.1) occurs a Hopf bifurcation when β>β.

    In order to demonstrate some results about Hopf bifurcation, we consider β as bifurcation parameter. We know that the alcoholism equilibrium P1 is feasible for β[0.0099,0.8]. Thus, system (2.1) is stable when 0.0099β<0.011, and Hopf bifurcation occurs at the alcoholism equilibrium P1 when 0.011β<0.08, and system (2.1) becomes stable again when 0.08β0.2, as depicted in Figure 8(a-e).

    Figure 8.  Hopf bifurcation occurs at the alcoholism equilibrium P1 when 0.0099β0.2.

    The backward and forward bifurcation diagram of system (2.1) is shown in Figure 9, and the direction of bifurcation depends upon the value of R01. As seen in the backward bifurcation diagram of Figure 9(a) when R01=4.4936>1, there is a threshold quantity Rt which is the value of R0. The alcohol free equilibrium is globally asymptotically stable when R0<Rt, where Rt=0.1350. There are two alcoholism equilibria and a alcohol free equilibrium when Rt<R0<1, the upper ones are stable, the middle ones are unstable and the lower ones is globally asymptotically stable. There are a stable alcoholism equilibria and an unstable alcohol free equilibrium when R0>1. As seen in the forward bifurcation diagram of Figure 9(b) when R01=0.5357<1, the alcohol free equilibrium is globally asymptotically stable when R0<1. There are a stable alcoholism equilibria and an unstable alcohol free equilibrium when R0>1.

    In this section, we examine the effects of changes in some parameters on the number of heavy problem drinkers. Therefore, we carry out the sensitivity analysis of heavy problem drinkers H.

    Figure 10 shows a comparison between the parameters of system (2.1) versus the heavy problem drinkers, we main consider the effect of μ1,q,γ,τ on the dynamics of heavy problem drinkers. Firstly, we choose the effect of parameter μ1 on the dynamics of heavy problem drinkers, the other parameter values are Λ=0.8,α=0.07,α1=0.009,α2=0.5,μ2=0.8,μ3=0.8,μ4=0.8,γ=0.1,q=0.09,ρ=0.09,τ=0.03 and β=0.04, as depicted in Figure 10(a). We know that the number of heavy problem drinkers will decrease when μ1 increase from Figure 10(a). The simulation shows that more Twitter messages can result in the lower alcoholism cases, and changing the number of Twitter messages posted per day does affect the time when the alcoholism reaches the peak. Secondly, we choose the effect of parameter q on the dynamics of heavy problem drinkers, the other parameter values are Λ=0.8,α=0.007,α1=0.009,α2=0.5,μ1=0.04,μ2=0.8,μ3=0.8,μ4=0.8,γ=0.1,ρ=0.09,τ=0.03 and β=0.15, as depicted in Figure 10(b). We know that the number of heavy problem drinkers will decrease when q increase from Figure 10(b). Thirdly, we choose the effect of parameter γ on the dynamics of heavy problem drinkers, the other parameter values are Λ=0.8,α=0.007,α1=0.009,α2=0.5,μ1=0.04,μ2=0.8,μ3=0.8,μ4=0.8,q=0.07,τ=0.03,ρ=0.01 and β=0.15, as depicted in Figure 10(c). We know that the number of heavy problem drinkers will decrease when γ increase from Figure 10(c). The simulation results in Figure 10(b) and 10(c) show that treatment significantly reduces the number of alcoholism cases. Finally, we choose the effect of parameter τ on the dynamics of heavy problem drinkers, the other parameter values are Λ=0.8,α=0.007,α1=0.009,α2=0.5,μ1=0.04,μ2=0.8,μ3=0.8,μ4=0.8,γ=0.1,q=0.07,ρ=0.09 and β=0.15, as depicted in Figure 10(d). We know that the number of heavy problem drinkers will increase when τ increase from Figure 10(d). This indicates that the rate of upper outdated Twitter messages result in the upper alcoholism cases.

    Figure 10.  Sensitivity analysis of heavy problem drinkers H.

    We construct a new alcoholism model with treatment and effect of Twitter in this paper. We study the stability of all equilibria and derive the basic reproductive number R0. We also investigate the occurrence of backward and forward bifurcation for a certain defined range of R0 by the center manifold theory. Furthermore, we give some numerical results and sensitivity analysis to extend and illustrate our results. Our results show that Twitter may be a good indicator of alcoholism model and affect the emergence and spread of drinking behavior. How to prove existence of Hopf bifurcation analytically is interesting and still open. We will leave this work in future.

    We are grateful to the anonymous referees and the editors for their valuable comments and suggestions which improved the quality of the paper. This work is supported by the National Natural Science Foundation of China (11861044 and 11661050), and the HongLiu first-class disciplines Development Program of Lanzhou University of Technology.

    The authors declare there is no conflict of interest.

    The formula of d1, d2, d3 in the proof of (Ⅱ) of Theorem 3.

    d1=7Φ2α14+12Φ2α13α2+12Φ2α13γ+12Φ2α13q+12Φ2α13ρ+18Φ2α13τ+6Φ2α12α22+12Φ2α12α2γ+12Φ2α12α2q+18Φ2α12α2ρ+21Φ2α12α2τ+6Φ2α12γ2+12Φ2α12γq+18Φ2α12γρ+21Φ2α12γτ+6Φ2α12q2+12Φ2α12qρ+21Φ2α12qτ+6Φ2α12ρ2+21Φ2α12ρτ+13Φ2α12τ2+Φ2α1α23+3Φ2α1α22γ+3Φ2α1α22q+7Φ2α1α22ρ+8Φ2α1α22τ+3Φ2α1α2γ2+6Φ2α1α2γq+14Φ2α1α2γρ+16Φ2α1α2γτ+3Φ2α1α2q2+10Φ2α1α2qρ+16Φ2α1α2qτ+7Φ2α1α2ρ2+14Φ2α1α2ρτ+10Φ2α1α2τ2+Φ2α1γ3+3Φ2α1γ2q+7Φ2α1γ2ρ+8Φ2α1γ2τ+3Φ2α1γq2+10Φ2α1γqρ+16Φ2α1γqτ+14Φ2α1γρτ+10Φ2α1γτ2+Φ2α1q3+3Φ2α1q2ρ+8Φ2α1q2τ+3Φ2α1qρ2+10Φ2α1qτ2+Φ2α1ρ3+8Φ2α1ρ2τ+10Φ2α1ρτ2+2Φ2α1τ3+Φ2α23ρ+Φ2α23τ+3Φ2α22γτ+2Φ2α22qρ+3Φ2α22qτ+Φ2α22ρ2+2Φ2α22ρτ+2Φ2α22τ2+3Φ2α2γ2ρ+3Φ2α2γ2τ+4Φ2α2γqρ+6Φ2α2γqτ+2Φ2α2γρ2+4Φ2α2γρτ+4Φ2α2γτ2+3Φ2α2q2τ+2Φ2α2qρ2+3Φ2α2qρτ+4Φ2α2qτ2+Φ2α2ρ3+2Φ2α2ρ2τ+3Φ2α2ρτ2+Φ2α2τ3+Φ2γ3ρ+Φ2γ3τ+2Φ2γ2qρ+3Φ2γ2qτ+Φ2γ2ρ2+2Φ2γ2ρτ+2Φ2γ2τ2+Φ2γq2ρ+3Φ2γq2τ+2Φ2γqρ2+3Φ2γqρτ+4Φ2γqτ2+Φ2γρ3+2Φ2γρ2τ+3Φ2γρτ2+Φ2γτ3+Φ2q3τ+Φ2q2ρτ+2Φ2q2τ2+Φ2qρ2τ+2Φ2qρτ2+Φ2qτ3+Φ2ρ3τ+2Φ2ρ2τ2+Φ2ρτ3+6αΦα13α2ρ+8αΦα12α22ρ+8αΦα12α2γρ+8αΦα12α2qρ+8αΦα12α2ρ2+2αΦα12α2ρτ+2αΦα1α23ρ+4αΦα1α22γρ+4αΦα1α22qρ+10αΦα1α22ρ2+2αΦα1α22ρτ+2αΦα1α2γ2ρ+4αΦα1α2γqρ+10αΦα1α2γρ2+2αΦα1α2γρτ+2αΦα1α2q2ρ+10αΦα1α2qρ2+2αΦα1α2qρτ+2αΦα1α2ρ3+2αΦα1α2ρ2τ+2αΦα23ρ2+4αΦα22γρ2+4αΦα22qρ2+2αΦα22ρ3+2αΦα22ρ2τ+2αΦα2γ2ρ2+4αΦα2γqρ2+2αΦα2γρ3+2αΦα2γρ2τ+Φ2α2q2ρ+2αΦα2q2ρ2+2αΦα2qρ3+2αΦα2qρ2τ+3Φ2α22γρ+7Φ2α1γρ2+10Φ2α1qρτ,
    d2=6Φα15+9αα14α2ρ+11Φα14α2+11Φα14γ+11Φα14q+11Φα14ρ+26Φα14τ+15αα13α22ρ+6Φα13α22+15αα13α2γρ+12Φα13α2γ+15αα13α2qρ+15αα13α2ρ2+6αα13α2ρτ+18Φα13α2ρ+33Φα13α2τ+6Φα13γ2+12Φα13γq+18Φα13γρ+33Φα13γτ+6Φα13q2+12Φα13qρ+33Φα13qτ+6Φα13ρ2+27Φα13τ2+7αα12α23ρ+Φα12α23+14αα12α22γρ+3Φα12α22γ+14αα12α22qρ+3Φα12α22q+23αα12α22ρ2+8αα12α22ρτ+8Φα12α22ρ+14Φα12α22τ+3Φα12α2γ2+14αα12α2γqρ+6Φα12α2γq+23αα12α2γρ2+8αα12α2γρτ+16Φα12α2γρ+28Φα12α2γτ+7αα12α2q2ρ+3Φα12α2q2+23αα12α2qρ2+8αα12α2qρτ+11Φα12α2qρ+28Φα12α2qτ+7αα12α2ρ3+8αα12α2ρ2τ+8Φα12α2ρ2+αα12α2ρτ2+26Φα12α2ρτ+27Φα12α2τ2+Φα12γ3+3Φα12γ2q+8Φα12γ2ρ+14Φα12γ2τ+3Φα12γq2+11Φα12γqρ+28Φα12γqτ+8Φα12γρ2+26Φα12γρτ+27Φα12γτ2+Φα12q3+3Φα12q2ρ+14Φα12q2τ+3Φα12qρ2+19Φα12qρτ+27Φα12qτ2+Φα12ρ3+14Φα12ρ2τ+27Φα12ρτ2+7Φα12τ3+αα1α24ρ+3αα1α23γρ+3αα1α23qρ+9αα1α23ρ2+2αα1α23ρτ+Φα1α23ρ+2Φα1α23τ+3αα1α22γ2ρ+6αα1α22γqρ+18αα1α22γρ2+4αα1α22γρτ+6Φα1α22γτ+3αα1α22q2ρ+18αα1α22qρ2+4αα1α22qρτ+2Φα1α22qρ+9αα1α22ρ3+10αα1α22ρ2τ+2Φα1α22ρ2+αα1α22ρτ2+5Φα1α22ρτ+9Φα1α22τ2+αα1α2γ3ρ+3αα1α2γ2qρ+9αα1α2γ2ρ2+2αα1α2γ2ρτ+3Φα1α2γ2ρ+3αα1α2γq2ρ+18αα1α2γqρ2+4αα1α2γqρτ+4Φα1α2γqρ+12Φα1α2γqτ+9αα1α2γρ3+10αα1α2γρ2τ+4Φα1α2γρ2+αα1α2γρτ2+10Φα1α2γρτ+18Φα1α2γτ2+αα1α2q3ρ+9αα1α2q2ρ2+2αα1α2q2ρτ+Φα1α2q2ρ+6Φα1α2q2τ+9αα1α2qρ3+10αα1α2qρ2τ+2Φα1α2qρ2+αα1α2qρτ2+5Φα1α2qρτ+αα1α2ρ4+2αα1α2ρ3τ+Φα1α2ρ3+αα1α2ρ2τ2+5Φα1α2ρ2τ+15Φα1α2ρτ2+5Φα1α2τ3+Φα1γ3ρ+2Φα1γ3τ+2Φα1γ2qρ+6Φα1γ2qτ+2Φα1γ2ρ2+9Φα1γ2τ2+Φα1γq2ρ+6Φα1γq2τ+2Φα1γqρ2+5Φα1γqρτ+18Φα1γqτ2+Φα1γρ3+5Φα1γρ2τ+15Φα1γρτ2+5Φα1γτ3+2Φα1q3τ+9Φα1q2τ2+5Φα1qτ3+2Φα1ρ3τ+9Φα1ρ2τ2+5Φα1ρτ3+αα24ρ2+3αα23γρ2+3αα23qρ2+2αα23ρ3+2αα23ρ2τ+Φα23τ2+3αα22γ2ρ2+6αα22γqρ2+4αα22γρ3+3Φα22γτ2+3αα22q2ρ2+4αα22qρ3+4αα22qρ2τ+Φα22qτ(3τρ)+αα22ρ4+2αα22ρ3τ+αα22ρ2τ2+2Φα22ρτ2+Φα22τ3+αα2γ3ρ2+3αα2γ2qρ2+2αα2γ2ρ3+2αα2γ2ρ2τ+3Φα2γ2τ2+3αα2γq2ρ2+4αα2γqρ3+4αα2γqρ2τ+αα2γρ4+2αα2γρ3τ+αα2γρ2τ2+4Φα2γρτ2+2Φα2γτ3+αα2q3ρ2+2αα2q2ρ3+2αα2q2ρ2τ+Φα2q2τ(3τ2ρ)+αα2qρ4+2αα2qρ3τ+αα2qρ2τ2+Φα2qρτ(3τ2ρ)+2Φα2qτ3+2Φα2ρ2τ2+Φα2ρτ3+Φγ3τ2+Φρ2τ3+Φγ2qτ(3τρ)+2Φγ2ρτ2+Φγ2τ3+Φγq2τ(3τ2ρ)+Φγqρτ(3τ2ρ)+2Φγqτ3+2Φγρ2τ2+Φγρτ3+Φq3τ(τρ)+Φq2ρτ(τρ)+Φq2τ(τ2ρ2)+Φqρ2τ(τρ)+Φqρτ3+Φρ3τ2+7αα12α2γ2ρ+3Φα1α22γρ+6Φα1α22qτ+6Φα1α2γ2τ+18Φα1α2qτ2+5Φα1γ2ρτ+12Φα1qρτ2+4αα22γρ2τ+Φα2γqτ(6τ2ρ)+33Φα13ρτ+12Φα13α2q,
    \begin{eqnarray*} d_{3}& = &12\, {\alpha_{1}}^5\, \tau + 16\, {\alpha_{1}}^4\, \alpha_{2}\, \tau + 16\, {\alpha_{1}}^4\, {\gamma}\, \tau + 16\, {\alpha_{1}}^4\, q\, \tau + 16\, {\alpha_{1}}^4\, \rho\, \tau + 18\, {\alpha_{1}}^4\, {\tau}^2 + 7\, {\alpha_{1}}^3\, {\alpha_{2}}^2\, \tau \\ &&+ 14\, {\alpha_{1}}^3\, \alpha_{2}\, q\, \tau + 14\, {\alpha_{1}}^3\, \alpha_{2}\, \rho\, \tau + 21\, {\alpha_{1}}^3\, \alpha_{2}\, {\tau}^2 + 7\, {\alpha_{1}}^3\, {{\gamma}}^2\, \tau + 14\, {\alpha_{1}}^3\, {\gamma}\, q\, \tau + 14\, {\alpha_{1}}^3\, {\gamma}\, \rho\, \tau\\ &&+ 7\, {\alpha_{1}}^3\, q^2\, \tau + 14\, {\alpha_{1}}^3\, q\, \rho\, \tau + 21\, {\alpha_{1}}^3\, q\, {\tau}^2 + 7\, {\alpha_{1}}^3\, {\rho}^2\, \tau + 21\, {\alpha_{1}}^3\, \rho\, {\tau}^2 + 6\, {\alpha_{1}}^3\, {\tau}^3 + {\alpha_{1}}^2\, {\alpha_{2}}^3\, \tau \\ &&+ 3\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, q\, \tau + 3\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, \rho\, \tau + 8\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\tau}^2 + 3\, {\alpha_{1}}^2\, \alpha_{2}\, {{\gamma}}^2\, \tau + 6\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, q\, \tau + 6\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, \rho\, \tau \\ &&+ 16\, {\alpha_{1}}^2\, \alpha_{2}\, {\gamma}\, {\tau}^2 + 3\, {\alpha_{1}}^2\, \alpha_{2}\, q^2\, \tau + 6\, {\alpha_{1}}^2\, \alpha_{2}\, q\, \rho\, \tau + 16\, {\alpha_{1}}^2\, \alpha_{2}\, q\, {\tau}^2 + 3\, {\alpha_{1}}^2\, \alpha_{2}\, {\rho}^2\, \tau + 16\, {\alpha_{1}}^2\, \alpha_{2}\, \rho\, {\tau}^2 \\ &&+ 5\, {\alpha_{1}}^2\, \alpha_{2}\, {\tau}^3 + {\alpha_{1}}^2\, {{\gamma}}^3\, \tau + 3\, {\alpha_{1}}^2\, {{\gamma}}^2\, q\, \tau + 3\, {\alpha_{1}}^2\, {{\gamma}}^2\, \rho\, \tau + 8\, {\alpha_{1}}^2\, {{\gamma}}^2\, {\tau}^2 + 3\, {\alpha_{1}}^2\, {\gamma}\, q^2\, \tau + 6\, {\alpha_{1}}^2\, {\gamma}\, q\, \rho\, \tau \\ &&+ 16\, {\alpha_{1}}^2\, {\gamma}\, q\, {\tau}^2 + 3\, {\alpha_{1}}^2\, {\gamma}\, {\rho}^2\, \tau + 16\, {\alpha_{1}}^2\, {\gamma}\, \rho\, {\tau}^2 + 5\, {\alpha_{1}}^2\, {\gamma}\, {\tau}^3 + {\alpha_{1}}^2\, q^3\, \tau + 3\, {\alpha_{1}}^2\, q^2\, \rho\, \tau + 8\, {\alpha_{1}}^2\, q^2\, {\tau}^2 \\ &&+ 3\, {\alpha_{1}}^2\, q\, {\rho}^2\, \tau + 16\, {\alpha_{1}}^2\, q\, \rho\, {\tau}^2 + 5\, {\alpha_{1}}^2\, q\, {\tau}^3 + {\alpha_{1}}^2\, {\rho}^3\, \tau + 8\, {\alpha_{1}}^2\, {\rho}^2\, {\tau}^2 + 5\, {\alpha_{1}}^2\, \rho\, {\tau}^3 + \alpha_{1}\, {\alpha_{2}}^3\, {\tau}^2 \\ &&+ 3\, \alpha_{1}\, {\alpha_{2}}^2\, q\, {\tau}^2 + 3\, \alpha_{1}\, {\alpha_{2}}^2\, \rho\, {\tau}^2 + \alpha_{1}\, {\alpha_{2}}^2\, {\tau}^3 + 3\, \alpha_{1}\, \alpha_{2}\, {{\gamma}}^2\, {\tau}^2 + 6\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, q\, {\tau}^2 + 6\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, \rho\, {\tau}^2 \\ &&+ 3\, \alpha_{1}\, \alpha_{2}\, q^2\, {\tau}^2 + 6\, \alpha_{1}\, \alpha_{2}\, q\, \rho\, {\tau}^2+ 2\, \alpha_{1}\, \alpha_{2}\, q\, {\tau}^3 + 3\, \alpha_{1}\, \alpha_{2}\, {\rho}^2\, {\tau}^2 + 2\, \alpha_{1}\, \alpha_{2}\, \rho\, {\tau}^3 + \alpha_{1}\, {{\gamma}}^3\, {\tau}^2 \\ && + 3\, \alpha_{1}\, {{\gamma}}^2\, \rho\, {\tau}^2+ \alpha_{1}\, {{\gamma}}^2\, {\tau}^3 + 3\, \alpha_{1}\, {\gamma}\, q^2\, {\tau}^2 + 6\, \alpha_{1}\, {\gamma}\, q\, \rho\, {\tau}^2 + 2\, \alpha_{1}\, {\gamma}\, q\, {\tau}^3 + 3\, \alpha_{1}\, {\gamma}\, {\rho}^2\, {\tau}^2 + 2\, \alpha_{1}\, {\gamma}\, \rho\, {\tau}^3 \\ &&+ \alpha_{1}\, q^3\, {\tau}^2 + 3\, \alpha_{1}\, q^2\, \rho\, {\tau}^2 + \alpha_{1}\, q^2\, {\tau}^3 + 3\, \alpha_{1}\, q\, {\rho}^2\, {\tau}^2 + 2\, \alpha_{1}\, q\, \rho\, {\tau}^3 + \alpha_{1}\, {\rho}^3\, {\tau}^2 + \alpha_{1}\, {\rho}^2\, {\tau}^3\\ &&+14\, {\alpha_{1}}^3\, \alpha_{2}\, {\gamma}\, \tau+ 21\, {\alpha_{1}}^3\, {\gamma}\, {\tau}^2+ 3\, {\alpha_{1}}^2\, {\alpha_{2}}^2\, {\gamma}\, \tau+ 3\, \alpha_{1}\, {\alpha_{2}}^2\, {\gamma}\, {\tau}^2+ 2\, \alpha_{1}\, \alpha_{2}\, {\gamma}\, {\tau}^3+ 3\, \alpha_{1}\, {{\gamma}}^2\, q\, {\tau}^2 . \end{eqnarray*}

    The formula of f_{1}, f_{2}, f_{3}.

    \begin{eqnarray*} f_{1}& = &7\, {{\Phi}}^2\, {{\alpha}_{1}}^4 + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\alpha}_{2} + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\gamma} + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, q + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\rho} + 18\, {{\Phi}}^2\, {{\alpha}_{1}}^3\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2 \\ &&+ 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma} + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q + 18\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho} + 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\gamma}}^2 + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\gamma}\, q \\ &&+ 18\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\gamma}\, {\rho}+ 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\gamma}\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, q^2 + 12\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, q\, {\rho} + 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, q\, {\tau} + 6\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\rho}}^2 \\ &&+ 21\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {\rho}\, {\tau} + 13\, {{\Phi}}^2\, {{\alpha}_{1}}^2\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^3 + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q + 7\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho} \\ &&+ 8\, {{\Phi}}^2\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2 + 6\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q + 14\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho} + 16\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, q^2 \\ &&+ 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho} + 16\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\tau} + 7\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2 + 14\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {\rho}\, {\tau} + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\alpha}_{2}\, {{\tau}}^2+ {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^3 \\ &&+ 3\, {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^2\, q + 7\, {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^2\, {\rho} + 8\, {{\Phi}}^2\, {\alpha}_{1}\, {{\gamma}}^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, q^2 + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, q\, {\rho} + 16\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, q\, {\tau} \\ &&+ 14\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, {\rho}\, {\tau} + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{1}\, q^3 + 3\, {{\Phi}}^2\, {\alpha}_{1}\, q^2\, {\rho} + 8\, {{\Phi}}^2\, {\alpha}_{1}\, q^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{1}\, q\, {{\rho}}^2 \\ &&+ 10\, {{\Phi}}^2\, {\alpha}_{1}\, q\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{1}\, {{\rho}}^3 + 8\, {{\Phi}}^2\, {\alpha}_{1}\, {{\rho}}^2\, {\tau} + 10\, {{\Phi}}^2\, {\alpha}_{1}\, {\rho}\, {{\tau}}^2 + 2\, {{\Phi}}^2\, {\alpha}_{1}\, {{\tau}}^3 + {{\Phi}}^2\, {{\alpha}_{2}}^3\, {\rho} + {{\Phi}}^2\, {{\alpha}_{2}}^3\, {\tau} \\ &&+ 3\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\tau} + 2\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, q\, {\rho} + 3\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, q\, {\tau} + {{\Phi}}^2\, {{\alpha}_{2}}^2\, {{\rho}}^2 + 2\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 2\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {{\tau}}^2 + 3\, {{\Phi}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho} \\ &&+ 3\, {{\Phi}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\tau} + 4\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} + 6\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\tau} + 2\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + 4\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} + 4\, {{\Phi}}^2\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^2 \\ &&+ 3\, {{\Phi}}^2\, {\alpha}_{2}\, q^2\, {\tau} + 2\, {{\Phi}}^2\, {\alpha}_{2}\, q\, {{\rho}}^2 + 3\, {{\Phi}}^2\, {\alpha}_{2}\, q\, {\rho}\, {\tau} + 4\, {{\Phi}}^2\, {\alpha}_{2}\, q\, {{\tau}}^2 + {{\Phi}}^2\, {\alpha}_{2}\, {{\rho}}^3 + 2\, {{\Phi}}^2\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 3\, {{\Phi}}^2\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 \\ && +{{\Phi}}^2\, {\alpha}_{2}\, {{\tau}}^3 + {{\Phi}}^2\, {{\gamma}}^3\, {\rho} + {{\Phi}}^2\, {{\gamma}}^3\, {\tau} + 2\, {{\Phi}}^2\, {{\gamma}}^2\, q\, {\rho} + 3\, {{\Phi}}^2\, {{\gamma}}^2\, q\, {\tau} + {{\Phi}}^2\, {{\gamma}}^2\, {{\rho}}^2 + 2\, {{\Phi}}^2\, {{\gamma}}^2\, {\rho}\, {\tau} + 2\, {{\Phi}}^2\, {{\gamma}}^2\, {{\tau}}^2\\ && + {{\Phi}}^2\, {\gamma}\, q^2\, {\rho} + 3\, {{\Phi}}^2\, {\gamma}\, q^2\, {\tau} + 2\, {{\Phi}}^2\, {\gamma}\, q\, {{\rho}}^2 + 3\, {{\Phi}}^2\, {\gamma}\, q\, {\rho}\, {\tau} + 4\, {{\Phi}}^2\, {\gamma}\, q\, {{\tau}}^2 + {{\Phi}}^2\, {\gamma}\, {{\rho}}^3 + 2\, {{\Phi}}^2\, {\gamma}\, {{\rho}}^2\, {\tau} \\ &&+ 3\, {{\Phi}}^2\, {\gamma}\, {\rho}\, {{\tau}}^2 + {{\Phi}}^2\, {\gamma}\, {{\tau}}^3 + {{\Phi}}^2\, q^3\, {\tau} + {{\Phi}}^2\, q^2\, {\rho}\, {\tau} + 2\, {{\Phi}}^2\, q^2\, {{\tau}}^2 + {{\Phi}}^2\, q\, {{\rho}}^2\, {\tau} + 2\, {{\Phi}}^2\, q\, {\rho}\, {{\tau}}^2 + {{\Phi}}^2\, q\, {{\tau}}^3 \\ &&+ {{\Phi}}^2\, {{\rho}}^3\, {\tau} + 2\, {{\Phi}}^2\, {{\rho}}^2\, {{\tau}}^2 + {{\Phi}}^2\, {\rho}\, {{\tau}}^3 + 6\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho} + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho} + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\\ && + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho} + 8\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\rho} + 4\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho} \\ &&+ 4\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\rho} + 10\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho} + 4\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} \\ &&+ 10\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\rho} + 10\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {\tau} \\ &&+ 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^3 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 2\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^3\, {{\rho}}^2 + 4\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^2 + 4\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, {{\rho}}^3 \\ &&+ 2\, {\alpha}\, {\Phi}\, {{\alpha}_{2}}^2\, {{\rho}}^2\, {\tau} + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^2 + 4\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^3 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2\, {\tau}+ {{\Phi}}^2\, {\alpha}_{2}\, q^2\, {\rho} \\ &&+ 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, q^2\, {{\rho}}^2 + 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, q\, {{\rho}}^3+ 2\, {\alpha}\, {\Phi}\, {\alpha}_{2}\, q\, {{\rho}}^2\, {\tau}+ 3\, {{\Phi}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho}+ 7\, {{\Phi}}^2\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^2+ 10\, {{\Phi}}^2\, {\alpha}_{1}\, q\, {\rho}\, {\tau}, \\ f_{2}& = &6\, {\Phi}\, {{\alpha}_{1}}^5 + 9\, {\alpha}\, {{\alpha}_{1}}^4\, {\alpha}_{2}\, {\rho} + 11\, {\Phi}\, {{\alpha}_{1}}^4\, {\alpha}_{2} + 11\, {\Phi}\, {{\alpha}_{1}}^4\, {\gamma} + 11\, {\Phi}\, {{\alpha}_{1}}^4\, q + 11\, {\Phi}\, {{\alpha}_{1}}^4\, {\rho} + 26\, {\Phi}\, {{\alpha}_{1}}^4\, {\tau} \\ &&+ 15\, {\alpha}\, {{\alpha}_{1}}^3\, {{\alpha}_{2}}^2\, {\rho} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, {{\alpha}_{2}}^2 + 15\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\gamma}\, {\rho} + 12\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\gamma} + 15\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, q\, {\rho} \\ &&+ 15\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {{\rho}}^2 + 6\, {\alpha}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho}\, {\tau} + 18\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho} + 33\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\tau} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, {{\gamma}}^2 + 12\, {\Phi}\, {{\alpha}_{1}}^3\, {\gamma}\, q \\ &&+ 18\, {\Phi}\, {{\alpha}_{1}}^3\, {\gamma}\, {\rho} + 33\, {\Phi}\, {{\alpha}_{1}}^3\, {\gamma}\, {\tau} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, q^2 + 12\, {\Phi}\, {{\alpha}_{1}}^3\, q\, {\rho} + 33\, {\Phi}\, {{\alpha}_{1}}^3\, q\, {\tau} + 6\, {\Phi}\, {{\alpha}_{1}}^3\, {{\rho}}^2 \\ &&+ 27\, {\Phi}\, {{\alpha}_{1}}^3\, {{\tau}}^2 + 7\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^3\, {\rho} + {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^3 + 14\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\gamma} + 14\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, q\, {\rho}\\ && + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, q + 23\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {{\rho}}^2 + 8\, {\alpha}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 8\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho} + 14\, {\Phi}\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\tau} \\ &&+ 3\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\gamma}}^2 + 14\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} + 6\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, q + 23\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + 8\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 16\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho} + 28\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\tau} + 7\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q^2\, {\rho} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q^2+ 23\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {{\rho}}^2 \\ &&+ 8\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho}\, {\tau} + 11\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho} + 28\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\tau} + 7\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^3 + 8\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} \\ &&+ 8\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2 + {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 + 26\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^3 + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, q \\ &&+ 8\, {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {\rho} + 14\, {\Phi}\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {\tau} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, q^2 + 11\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {\rho} + 28\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {\tau} + 8\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, {{\rho}}^2 \\ &&+ 26\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, {\rho}\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, {\gamma}\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{1}}^2\, q^3 + 3\, {\Phi}\, {{\alpha}_{1}}^2\, q^2\, {\rho} + 14\, {\Phi}\, {{\alpha}_{1}}^2\, q^2\, {\tau} + 3\, {\Phi}\, {{\alpha}_{1}}^2\, q\, {{\rho}}^2 \\ &&+ 19\, {\Phi}\, {{\alpha}_{1}}^2\, q\, {\rho}\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, q\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{1}}^2\, {{\rho}}^3 + 14\, {\Phi}\, {{\alpha}_{1}}^2\, {{\rho}}^2\, {\tau} + 27\, {\Phi}\, {{\alpha}_{1}}^2\, {\rho}\, {{\tau}}^2+ 7\, {\Phi}\, {{\alpha}_{1}}^2\, {{\tau}}^3 \\ &&+ {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^4\, {\rho} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\gamma}\, {\rho} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, q\, {\rho} + 9\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\rho}\, {\tau} + {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\rho} \\ &&+ 2\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^3\, {\tau} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\gamma}}^2\, {\rho} + 6\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, q\, {\rho} + 18\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 6\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\tau} + 3\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q^2\, {\rho} + 18\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\rho}\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\rho} \\ &&+ 9\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^3 + 10\, {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^2\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\rho}}^2 + {\alpha}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 9\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\tau}}^2 \\ &&+ {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^3\, {\rho} + 3\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, q\, {\rho} + 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho}\, {\tau} + 3\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho} \\ &&+ 3\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q^2\, {\rho} + 18\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\rho}\, {\tau} + 4\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\rho} + 12\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {\tau} \\ &&+ 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^3 + 10\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2\, {\tau} + 4\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {{\tau}}^2 + 10\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 18\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^2 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q^3\, {\rho} + 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\rho}\, {\tau} + {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\rho} + 6\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {\tau} \\ &&+ 9\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^3 + 10\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^2\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\rho}}^2 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {\tau} \\ &&+ {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^4+ 2\, {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^3\, {\tau} + {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^3 + {\alpha}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 15\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 \\ &&+ 5\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\tau}}^3 + {\Phi}\, {\alpha}_{1}\, {{\gamma}}^3\, {\rho} + 2\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^3\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, q\, {\rho} + 6\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, q\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, {{\rho}}^2 \\ &&+ 9\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, {{\tau}}^2 + {\Phi}\, {\alpha}_{1}\, {\gamma}\, q^2\, {\rho} + 6\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q^2\, {\tau} + 2\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q\, {{\rho}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q\, {\rho}\, {\tau} + 18\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, q\, {{\tau}}^2 \\ &&+ {\Phi}\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^3 + 5\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^2\, {\tau} + 15\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, {\rho}\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\gamma}\, {{\tau}}^3 + 2\, {\Phi}\, {\alpha}_{1}\, q^3\, {\tau} + 9\, {\Phi}\, {\alpha}_{1}\, q^2\, {{\tau}}^2 \\ &&+ 5\, {\Phi}\, {\alpha}_{1}\, q\, {{\tau}}^3 + 2\, {\Phi}\, {\alpha}_{1}\, {{\rho}}^3\, {\tau} + 9\, {\Phi}\, {\alpha}_{1}\, {{\rho}}^2\, {{\tau}}^2 + 5\, {\Phi}\, {\alpha}_{1}\, {\rho}\, {{\tau}}^3 + {\alpha}\, {{\alpha}_{2}}^4\, {{\rho}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^3\, {\gamma}\, {{\rho}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^3\, q\, {{\rho}}^2 \\ &&+ 2\, {\alpha}\, {{\alpha}_{2}}^3\, {{\rho}}^3+ 2\, {\alpha}\, {{\alpha}_{2}}^3\, {{\rho}}^2\, {\tau} + {\Phi}\, {{\alpha}_{2}}^3\, {{\tau}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^2\, {{\gamma}}^2\, {{\rho}}^2 + 6\, {\alpha}\, {{\alpha}_{2}}^2\, {\gamma}\, q\, {{\rho}}^2 + 4\, {\alpha}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^3 \\ &&+ 3\, {\Phi}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\tau}}^2 + 3\, {\alpha}\, {{\alpha}_{2}}^2\, q^2\, {{\rho}}^2 + 4\, {\alpha}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^3 + 4{\alpha}\, {{\alpha}_{2}}^2\, q\, {{\rho}}^2\, {\tau} + {\Phi}\, {{\alpha}_{2}}^2\, q\, {{\tau}}(3\tau-\rho) + {\alpha}\, {{\alpha}_{2}}^2\, {{\rho}}^4 \\ &&+ 2\, {\alpha}\, {{\alpha}_{2}}^2\, {{\rho}}^3\, {\tau} + {\alpha}\, {{\alpha}_{2}}^2\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\Phi}\, {{\alpha}_{2}}^2\, {\rho}\, {{\tau}}^2 + {\Phi}\, {{\alpha}_{2}}^2\, {{\tau}}^3 + {\alpha}\, {\alpha}_{2}\, {{\gamma}}^3\, {{\rho}}^2 + 3\, {\alpha}\, {\alpha}_{2}\, {{\gamma}}^2\, q\, {{\rho}}^2 + 2\, {\alpha}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^3 \\ &&+ 2\, {\alpha}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\rho}}^2\, {\tau} + 3\, {\Phi}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\tau}}^2 + 3\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, q^2\, {{\rho}}^2 + 4\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^3 + 4\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, q\, {{\rho}}^2\, {\tau} \\ && + {\alpha}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^4 + 2\, {\alpha}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^3\, {\tau} + {\alpha}\, {\alpha}_{2}\, {\gamma}\, {{\rho}}^2\, {{\tau}}^2 + 4\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {{\tau}}^2 + 2\, {\Phi}\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^3 + {\alpha}\, {\alpha}_{2}\, q^3\, {{\rho}}^2 \\ &&+ 2\, {\alpha}\, {\alpha}_{2}\, q^2\, {{\rho}}^3+ 2\, {\alpha}\, {\alpha}_{2}\, q^2\, {{\rho}}^2\, {\tau}+{\Phi}\, {\alpha}_{2}\, q^2\, {{\tau}}(3\tau-2\rho) + {\alpha}\, {\alpha}_{2}\, q\, {{\rho}}^4 + 2\, {\alpha}\, {\alpha}_{2}\, q\, {{\rho}}^3\, {\tau} + {\alpha}\, {\alpha}_{2}\, q\, {{\rho}}^2\, {{\tau}}^2 \\ &&+{\Phi}\, {\alpha}_{2}\, q\, {\rho}\, {{\tau}}(3\tau-2\rho) + 2\, {\Phi}\, {\alpha}_{2}\, q\, {{\tau}}^3 + 2\, {\Phi}\, {\alpha}_{2}\, {{\rho}}^2\, {{\tau}}^2 + {\Phi}\, {\alpha}_{2}\, {\rho}\, {{\tau}}^3 + {\Phi}\, {{\gamma}}^3\, {{\tau}}^2+ {\Phi}\, {{\rho}}^2\, {{\tau}}^3\\ &&+{\Phi}\, {{\gamma}}^2\, q\, {{\tau}}(3\tau-\rho) + 2\, {\Phi}\, {{\gamma}}^2\, {\rho}\, {{\tau}}^2 + {\Phi}\, {{\gamma}}^2\, {{\tau}}^3+{\Phi}\, {\gamma}\, q^2\, {{\tau}}(3\tau-2\rho)+ {\Phi}\, {\gamma}\, q\, {\rho}\, {{\tau}}(3\tau-2\rho) \\ &&+ 2\, {\Phi}\, {\gamma}\, q\, {{\tau}}^3 + 2\, {\Phi}\, {\gamma}\, {{\rho}}^2\, {{\tau}}^2 + {\Phi}\, {\gamma}\, {\rho}\, {{\tau}}^3+ {\Phi}\, q^3\, {{\tau}}(\tau-\rho) + {\Phi}\, q^2\, {\rho}\, {{\tau}}(\tau-\rho) + {\Phi}q^2{{\tau}}(\tau^2-\rho^2)\\ &&+{\Phi}\, q\, {{\rho}}^2{{\tau}}(\tau-\rho) + {\Phi}\, q\, {\rho}\, {{\tau}}^3 + {\Phi}\, {{\rho}}^3\, {{\tau}}^2+ 7\, {\alpha}\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\rho}+ 3\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {\rho}+ 6\, {\Phi}\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {\tau}\\ &&+ 6\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {\tau}+ 18\, {\Phi}\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\tau}}^2+ 5\, {\Phi}\, {\alpha}_{1}\, {{\gamma}}^2\, {\rho}\, {\tau}+ 12\, {\Phi}\, {\alpha}_{1}\, q\, {\rho}\, {{\tau}}^2+ 4\, {\alpha}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\rho}}^2\, {\tau}\\ &&+ {\Phi}\, {\alpha}_{2}\, {\gamma}\, q\, {{\tau}}(6\tau-2\rho)+ 33\, {\Phi}\, {{\alpha}_{1}}^3\, {\rho}\, {\tau}+ 12\, {\Phi}\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, q, \\ f_{3}& = &12\, {{\alpha}_{1}}^5\, {\tau} + 16\, {{\alpha}_{1}}^4\, {\alpha}_{2}\, {\tau} + 16\, {{\alpha}_{1}}^4\, {\gamma}\, {\tau} + 16\, {{\alpha}_{1}}^4\, q\, {\tau} + 16\, {{\alpha}_{1}}^4\, {\rho}\, {\tau} + 18\, {{\alpha}_{1}}^4\, {{\tau}}^2 + 7\, {{\alpha}_{1}}^3\, {{\alpha}_{2}}^2\, {\tau} \\ &&+ 14\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, q\, {\tau} + 14\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\rho}\, {\tau} + 21\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {{\tau}}^2 + 7\, {{\alpha}_{1}}^3\, {{\gamma}}^2\, {\tau} + 14\, {{\alpha}_{1}}^3\, {\gamma}\, q\, {\tau} + 14\, {{\alpha}_{1}}^3\, {\gamma}\, {\rho}\, {\tau}\\ &&+ 7\, {{\alpha}_{1}}^3\, q^2\, {\tau} + 14\, {{\alpha}_{1}}^3\, q\, {\rho}\, {\tau} + 21\, {{\alpha}_{1}}^3\, q\, {{\tau}}^2 + 7\, {{\alpha}_{1}}^3\, {{\rho}}^2\, {\tau} + 21\, {{\alpha}_{1}}^3\, {\rho}\, {{\tau}}^2 + 6\, {{\alpha}_{1}}^3\, {{\tau}}^3 + {{\alpha}_{1}}^2\, {{\alpha}_{2}}^3\, {\tau} \\ &&+ 3\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, q\, {\tau} + 3\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\rho}\, {\tau} + 8\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\gamma}}^2\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, q\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {\tau} \\ &&+ 16\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q^2\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {\rho}\, {\tau} + 16\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, q\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\rho}}^2\, {\tau} + 16\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {\rho}\, {{\tau}}^2 \\ &&+ 5\, {{\alpha}_{1}}^2\, {\alpha}_{2}\, {{\tau}}^3 + {{\alpha}_{1}}^2\, {{\gamma}}^3\, {\tau} + 3\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, q\, {\tau} + 3\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {\rho}\, {\tau} + 8\, {{\alpha}_{1}}^2\, {{\gamma}}^2\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\gamma}\, q^2\, {\tau} + 6\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {\rho}\, {\tau} \\ &&+ 16\, {{\alpha}_{1}}^2\, {\gamma}\, q\, {{\tau}}^2 + 3\, {{\alpha}_{1}}^2\, {\gamma}\, {{\rho}}^2\, {\tau} + 16\, {{\alpha}_{1}}^2\, {\gamma}\, {\rho}\, {{\tau}}^2 + 5\, {{\alpha}_{1}}^2\, {\gamma}\, {{\tau}}^3 + {{\alpha}_{1}}^2\, q^3\, {\tau} + 3\, {{\alpha}_{1}}^2\, q^2\, {\rho}\, {\tau} + 8\, {{\alpha}_{1}}^2\, q^2\, {{\tau}}^2 \\ &&+ 3\, {{\alpha}_{1}}^2\, q\, {{\rho}}^2\, {\tau} + 16\, {{\alpha}_{1}}^2\, q\, {\rho}\, {{\tau}}^2 + 5\, {{\alpha}_{1}}^2\, q\, {{\tau}}^3 + {{\alpha}_{1}}^2\, {{\rho}}^3\, {\tau} + 8\, {{\alpha}_{1}}^2\, {{\rho}}^2\, {{\tau}}^2 + 5\, {{\alpha}_{1}}^2\, {\rho}\, {{\tau}}^3 + {\alpha}_{1}\, {{\alpha}_{2}}^3\, {{\tau}}^2 \\ &&+ 3\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, q\, {{\tau}}^2 + 3\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\rho}\, {{\tau}}^2 + {\alpha}_{1}\, {{\alpha}_{2}}^2\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\alpha}_{2}\, {{\gamma}}^2\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, q\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {\rho}\, {{\tau}}^2 \\ &&+ 3\, {\alpha}_{1}\, {\alpha}_{2}\, q^2\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {\rho}\, {{\tau}}^2+ 2\, {\alpha}_{1}\, {\alpha}_{2}\, q\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\alpha}_{2}\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\alpha}_{1}\, {\alpha}_{2}\, {\rho}\, {{\tau}}^3 + {\alpha}_{1}\, {{\gamma}}^3\, {{\tau}}^2 \\ && + 3\, {\alpha}_{1}\, {{\gamma}}^2\, {\rho}\, {{\tau}}^2+ {\alpha}_{1}\, {{\gamma}}^2\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\gamma}\, q^2\, {{\tau}}^2 + 6\, {\alpha}_{1}\, {\gamma}\, q\, {\rho}\, {{\tau}}^2 + 2\, {\alpha}_{1}\, {\gamma}\, q\, {{\tau}}^3 + 3\, {\alpha}_{1}\, {\gamma}\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\alpha}_{1}\, {\gamma}\, {\rho}\, {{\tau}}^3 \\ &&+ {\alpha}_{1}\, q^3\, {{\tau}}^2 + 3\, {\alpha}_{1}\, q^2\, {\rho}\, {{\tau}}^2 + {\alpha}_{1}\, q^2\, {{\tau}}^3 + 3\, {\alpha}_{1}\, q\, {{\rho}}^2\, {{\tau}}^2 + 2\, {\alpha}_{1}\, q\, {\rho}\, {{\tau}}^3 + {\alpha}_{1}\, {{\rho}}^3\, {{\tau}}^2 + {\alpha}_{1}\, {{\rho}}^2\, {{\tau}}^3\\ &&+14\, {{\alpha}_{1}}^3\, {\alpha}_{2}\, {\gamma}\, {\tau}+ 21\, {{\alpha}_{1}}^3\, {\gamma}\, {{\tau}}^2+ 3\, {{\alpha}_{1}}^2\, {{\alpha}_{2}}^2\, {\gamma}\, {\tau}+ 3\, {\alpha}_{1}\, {{\alpha}_{2}}^2\, {\gamma}\, {{\tau}}^2+ 2\, {\alpha}_{1}\, {\alpha}_{2}\, {\gamma}\, {{\tau}}^3+ 3\, {\alpha}_{1}\, {{\gamma}}^2\, q\, {{\tau}}^2 . \end{eqnarray*}
    [1] Vunjak-Novakovic G, Tandon N, Godier A, et al. (2009) Challenges in cardiac tissue engineering. Tissue Eng Part B 16: 169–187.
    [2] Leone M, Magadum A, Engel FB (2015) Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations. Am J Physiol-Heart C 309: H1237–H1250. doi: 10.1152/ajpheart.00559.2015
    [3] Mummery CL, Zhang J, Ng ES, et al. (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a method overview. Circ Res 111: 344–358. doi: 10.1161/CIRCRESAHA.110.227512
    [4] Schwach V, Passier R (2016) Generation and purification of human stem cell-derived cardiomyocytes. Differentiation 91: 126–138. doi: 10.1016/j.diff.2016.01.001
    [5] Kempf H, Andree B, Zweigerdt R (2016) Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliver Rev 96: 18–30. doi: 10.1016/j.addr.2015.11.016
    [6] Duan Y, Liu Z, O'Neill J, et al. (2011) Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J Cardiovasc Transl 4: 605–615. doi: 10.1007/s12265-011-9304-0
    [7] Higuchi S, Lin Q, Wang J, et al. (2013) Heart extracellular matrix supports cardiomyocyte differentiation of mouse embryonic stem cells. J Biosci Bioeng 115: 320–325. doi: 10.1016/j.jbiosc.2012.10.004
    [8] Engler AJ, Sen S, Sweeney HL, et al. (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689. doi: 10.1016/j.cell.2006.06.044
    [9] Chaudhuri O, Gu L, Darnell M, et al. (2015) Substrate stress relaxation regulates cell spreading. Nat Commun 6: 6364. doi: 10.1038/ncomms7364
    [10] Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28: 134–146. doi: 10.1016/j.biomaterials.2006.09.017
    [11] Feng Z, Wagatsuma Y, Kikuchi M, et al. (2014) The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts. Biomaterials 35: 8078–8091. doi: 10.1016/j.biomaterials.2014.05.072
    [12] Feng Z, Ishiguro Y, Fujita K, et al. (2015) A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels. Biomaterials 67: 365–381. doi: 10.1016/j.biomaterials.2015.07.038
    [13] Johnson TD, Lin SY, Christman KL (2011) Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel. Nanotechnology 22: 494015. doi: 10.1088/0957-4484/22/49/494015
    [14] Freytes DO, Martin J, Velankar SS, et al. (2008) Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29: 1630–1637. doi: 10.1016/j.biomaterials.2007.12.014
    [15] Williams C, Budina E, Stoppel WL, et al. (2015) Cardiac Extracellular Matrix-Fibrin Hybrid Scaffolds with Tunable Properties for Cardiovascular Tissue Engineering. Acta Biomater 14: 84–95. doi: 10.1016/j.actbio.2014.11.035
    [16] Grover GN, Rao N, Christman KL (2014) Myocardial Matrix-Polyethylene Glycol Hybrid Hydrogels for Tissue Engineering. Nanotechnology 25: 014011. doi: 10.1088/0957-4484/25/1/014011
    [17] Singelyn JM, Christman KL (2011) Modulation of material properties of a decellularized myocardial matrix scaffold. Macromol Biosci 11: 731–738. doi: 10.1002/mabi.201000423
    [18] Everaerts F, Torrianni M, Hendriks M, et al. (2008) Biomechanical properties of carbodiimide crosslinked collagen: Influence of the formation of ester crosslinks. J Biomed Mater Res A 85: 547–555.
    [19] Fujita K, Tuchida Y, Seki H, et al. (2015) Characterizing and modulating the mechanical properties of hydrogels from ventricular extracellular matrix. 2015 10th Asian Control Conference (ASCC) 1–5.
    [20] Kikuchi M, Feng Z, Kosawada T, et al. (2016) Stress relaxation and stress-strain characteristics of porcine amniotic membrane. Bio-med Mater Eng 27: 603–611.
    [21] Johnson TD, DeQuach JA, Gaetani R, et al. (2014) Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater Sci 2: 735–744. doi: 10.1039/C3BM60283D
    [22] Ishihama Y, Oda Y, Tabata T, et al. (2005) Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein. Mol Cell Proteomics 4: 1265–1272. doi: 10.1074/mcp.M500061-MCP200
    [23] Fung YC (1993) Biomechanics: Mechanical properties of living tissues, 2 Eds, Springer.
    [24] Fancey KS (2005) A mechanical model for creep, recovery and stress relaxation in polymeric materials. J Mater Sci 40: 4827–4831. doi: 10.1007/s10853-005-2020-x
    [25] Feng Z, Matsumoto T, Nakamura T, et al. (2003) Measurements of the mechanical properties of contracted collagen gels populated with rat fibroblasts or cardiomyocytes. J Artif Organs 6: 192–196. doi: 10.1007/s10047-003-0230-z
    [26] Ott HC, Matthiesen TS, Goh SK, et al. (2008) Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14: 213–221. doi: 10.1038/nm1684
    [27] Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of Two-Component Hydrogels Prepared from Alginate and Poly(ethylene glycol)-Diamines. Macromolecules 32: 5561–5566. doi: 10.1021/ma990514m
    [28] Lee KY, Rowley JA, Eiselt P, et al. (2000) Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density. Macromolecules 33: 4291–4294. doi: 10.1021/ma9921347
    [29] Wang Y, Wang G, Luo X, et al. (2012) Substrate stiffness regulated the proliferation, migration, and differentiation of epidermal cells. Burns 38: 414–420. doi: 10.1016/j.burns.2011.09.002
    [30] Ungerleider JL, Johnson TD, Rao N, et al. (2015) Fabrication and Characterization of Injectable Hydrogels Derived from Decellularized Skeletal and Cardiac Muscle. Methods 84: 53–59. doi: 10.1016/j.ymeth.2015.03.024
    [31] Johnson TD, Dequach JA, Gaetani R, et al. (2014) Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater Sci 2: 735–744. doi: 10.1039/C3BM60283D
    [32] Seif-Naraghi SB, Horn D, Schup-Magoffin PA, et al. (2011) Patient-to-patient variability in autologous pericardial matrix scaffolds for cardiac repair. J Cardiovasc Transl 4: 545–556. doi: 10.1007/s12265-011-9293-z
    [33] Seif-Naraghi SB, Horn D, Schup-Magoffin PJ, et al. (2012) Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater 8: 3695–3703. doi: 10.1016/j.actbio.2012.06.030
    [34] Huang-Lee LL, Cheung DT, Nimni ME (1990) Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J Biomed Mater Res A 24: 1185–1201. doi: 10.1002/jbm.820240905
    [35] Cornwell KG, Lei P, Andreadis ST, et al. (2007) Crosslinking of discrete self-assembled collagen threads: Effects on mechanical strength and cell-matrix interactions. J Biomed Mater Res A 80: 362–371.
    [36] Yunoki S, Mori K, Suzuki T, et al. (2007) Novel elastic material from collagen for tissue engineering. J Mater Sci-Mater M 18: 1369–1375. doi: 10.1007/s10856-007-0121-6
    [37] Park SN, Park JC, Kim HO, et al. (2002) Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 23: 1205–1212. doi: 10.1016/S0142-9612(01)00235-6
    [38] Ma DH, Lai JY, Cheng HY, et al. (2010) Carbodiimide cross-linked amniotic membranes for cultivation of limbal epithelial cells. Biomaterials 31: 6647–6658. doi: 10.1016/j.biomaterials.2010.05.034
    [39] Piao Y, Chen B (2017) Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels. Int J Biol Macromol 101: 791–798. doi: 10.1016/j.ijbiomac.2017.03.155
    [40] Tanpichaia S, Oksmana K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Compos Part A-Appl S 88: 226–233. doi: 10.1016/j.compositesa.2016.06.002
    [41] DeQuach J, Lin J, Cam C, et al. (2013) Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model. Eur Cells Mater 23: 400–412.
    [42] Massensini AR, Ghuman H, Saldin LT, et al. (2015) Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater 27: 116–130. doi: 10.1016/j.actbio.2015.08.040
    [43] Wolf MT, Daly KA, Brennan-Pierce EP, et al. (2012) A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33: 7028–7038. doi: 10.1016/j.biomaterials.2012.06.051
    [44] Lee JS, Shin J, Park HM, et al. (2014) Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 15: 206–218. doi: 10.1021/bm4015039
    [45] Pouliot RA, Link PA, Mikhaiel NS, et al. (2016) Development and characterization of a naturally derived lung extracellular matrix hydrogel. J Biomed Mater Res A 104: 1922–1935. doi: 10.1002/jbm.a.35726
    [46] Ma L, Gao C, Mao Z, et al. (2004) Biodegradability and cell-mediated contraction of porous collagen scaffolds: the effect of lysine as a novel crosslinking bridge. J Biomed Mater Res A 71: 334–342.
    [47] Wang HB, Dembo M, Wang YL (2000) Substrate flexibility regulate growth and apoptosis of normal but not transformed cells. Am J Physiol-Cell Ph 279: C1345–C1350. doi: 10.1152/ajpcell.2000.279.5.C1345
    [48] Engler AJ, Carag-Kriegr C, Johnson CP, et al. (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121: 3794–3802. doi: 10.1242/jcs.029678
  • This article has been cited by:

    1. Zhan‐Ping Ma, Hai‐Feng Huo, Hong Xiang, Spatiotemporal patterns induced by delay and cross‐fractional diffusion in a predator‐prey model describing intraguild predation, 2020, 43, 0170-4214, 5179, 10.1002/mma.6259
    2. Hai-Feng Huo, Shuang-Lin Jing, Xun-Yang Wang, Hong Xiang, Modeling and analysis of a H1N1 model with relapse and effect of Twitter, 2020, 560, 03784371, 125136, 10.1016/j.physa.2020.125136
    3. Zizhen Zhang, Fangfang Yang, Wanjun Xia, Influence of time delay on bifurcation of a synthetic drug transmission model with psychological addicts, 2020, 2020, 1687-1847, 10.1186/s13662-020-02607-y
    4. Shuang-Lin Jing, Hai-Feng Huo, Hong Xiang, Modeling the Effects of Meteorological Factors and Unreported Cases on Seasonal Influenza Outbreaks in Gansu Province, China, 2020, 82, 0092-8240, 10.1007/s11538-020-00747-6
    5. Zhong-Kai Guo, Hong Xiang, Hai-Feng Huo, Analysis of an age-structured tuberculosis model with treatment and relapse, 2021, 82, 0303-6812, 10.1007/s00285-021-01595-1
    6. Hai-Feng Huo, Li-Na Gu, Hong Xiang, MODELLING AND ANALYSIS OF AN HIV/AIDS MODEL WITH DIFFERENT WINDOW PERIOD AND TREATMENT, 2021, 11, 2156-907X, 1927, 10.11948/20200279
    7. Cheng-Cheng Zhu, Jiang Zhu, Spread trend of COVID-19 epidemic outbreak in China: using exponential attractor method in a spatial heterogeneous SEIQR model, 2020, 17, 1551-0018, 3062, 10.3934/mbe.2020174
    8. Qian Yang, Hai-Feng Huo, Hong Xiang, Analysis of an edge-based SEIR epidemic model with sexual and non-sexual transmission routes, 2023, 609, 03784371, 128340, 10.1016/j.physa.2022.128340
    9. Banan Maayah, Omar Abu Arqub, Hilbert approximate solutions and fractional geometric behaviors of a dynamical fractional model of social media addiction affirmed by the fractional Caputo differential operator, 2023, 25900544, 100092, 10.1016/j.csfx.2023.100092
    10. SHAHER MOMANI, R. P. CHAUHAN, SUNIL KUMAR, SAMIR HADID, ANALYSIS OF SOCIAL MEDIA ADDICTION MODEL WITH SINGULAR OPERATOR, 2023, 31, 0218-348X, 10.1142/S0218348X23400972
    11. Ning Li, Yuequn Gao, Modified fractional order social media addiction modeling and sliding mode control considering a professionally operating population, 2024, 32, 2688-1594, 4043, 10.3934/era.2024182
    12. Yasir Nadeem Anjam, Saira Tabassum, Muhammad Arshad, Mati ur Rahman, Muhammad Ateeq Tahir, Mathematical insights of social media addiction: fractal-fractional perspectives, 2024, 99, 0031-8949, 055230, 10.1088/1402-4896/ad348c
    13. Saduri Das, Prashant K. Srivastava, Pankaj Biswas, The role of social media in a tuberculosis compartmental model: Exploring Hopf-bifurcation and nonlinear oscillations, 2024, 03784754, 10.1016/j.matcom.2024.11.015
    14. V. Madhusudanan, L. Guerrini, B. S. N. Murthy, Nhu-Ngoc Dao, Sungrae Cho, Exploring the Dynamics of Social Media Addiction and Depression Models With Discrete and Distributed Delays, 2025, 13, 2169-3536, 55682, 10.1109/ACCESS.2025.3555306
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7715) PDF downloads(1126) Cited by(7)

Figures and Tables

Figures(11)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog