Mini review Topical Sections

Electrochemistry on nanopillared electrodes

  • Received: 26 November 2016 Accepted: 12 January 2017 Published: 09 February 2017
  • The addition of nanopillars to electrodes increases their electrochemical capabilities through an increase in electroactive surface area. The nanopillars can be applied on either cathodes or anodes to engage in reduction-oxidation reactions. This minireview summaries some work on cyclic voltammetry, chronoamperometry, impedance change on nanopillared surface and compared their electrochemistry behavior on planar surfaces.

    Citation: Chandni Lotwala, Hai-Feng Ji. Electrochemistry on nanopillared electrodes[J]. AIMS Materials Science, 2017, 4(2): 292-301. doi: 10.3934/matersci.2017.2.292

    Related Papers:

    [1] Christoph Nick, Helmut F. Schlaak, Christiane Thielemann . Simulation and Measurement of Neuroelectrodes Characteristics with Integrated High Aspect Ratio Nano Structures. AIMS Materials Science, 2015, 2(3): 189-202. doi: 10.3934/matersci.2015.3.189
    [2] Sumaiya F. Begum, Hai-Feng Ji . Biochemistry tuned by nanopillars. AIMS Materials Science, 2021, 8(5): 748-759. doi: 10.3934/matersci.2021045
    [3] Hai-Feng Ji, Morasae Samadi, Hao Gu, Veronica Tomchak, Zhen Qiao . Fabrication and applications of self-assembled nanopillars. AIMS Materials Science, 2017, 4(4): 905-919. doi: 10.3934/matersci.2017.4.905
    [4] Christian M Julien, Alain Mauger, Ashraf E Abdel-Ghany, Ahmed M Hashem, Karim Zaghib . Smart materials for energy storage in Li-ion batteries. AIMS Materials Science, 2016, 3(1): 137-148. doi: 10.3934/matersci.2016.1.137
    [5] Alexandre Lavrov, Kamila Gawel, Malin Torsæter . Manipulating cement-steel interface by means of electric field: Experiment and potential applications. AIMS Materials Science, 2016, 3(3): 1199-1207. doi: 10.3934/matersci.2016.3.1199
    [6] Claas Hüter, Shuo Fu, Martin Finsterbusch, Egbert Figgemeier, Luke Wells, Robert Spatschek . Electrode–electrolyte interface stability in solid state electrolyte systems: influence of coating thickness under varying residual stresses. AIMS Materials Science, 2017, 4(4): 867-877. doi: 10.3934/matersci.2017.4.867
    [7] Christian M. Julien, Alain Mauger . In situ Raman analyses of electrode materials for Li-ion batteries. AIMS Materials Science, 2018, 5(4): 650-698. doi: 10.3934/matersci.2018.4.650
    [8] Stephanie Flores Zopf, Matthew J. Panzer . Integration of UV-cured Ionogel Electrolyte with Carbon Paper Electrodes. AIMS Materials Science, 2014, 1(1): 59-69. doi: 10.3934/matersci.2014.1.59
    [9] Serguei Chiriaev, Nis Dam Madsen, Horst-Günter Rubahn, Shuang Ma Andersen . Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures. AIMS Materials Science, 2017, 4(6): 1289-1304. doi: 10.3934/matersci.2017.6.1289
    [10] R.A. Silva, C.O. Soares, R. Afonso, M.D. Carvalho, A.C. Tavares, M.E. Melo Jorge, A. Gomes, M.I. da Silva Pereira, C.M. Rangel . Synthesis and electrocatalytic properties of La0.8Sr0.2FeO3−δ perovskite oxide for oxygen reactions. AIMS Materials Science, 2017, 4(4): 991-1009. doi: 10.3934/matersci.2017.4.991
  • The addition of nanopillars to electrodes increases their electrochemical capabilities through an increase in electroactive surface area. The nanopillars can be applied on either cathodes or anodes to engage in reduction-oxidation reactions. This minireview summaries some work on cyclic voltammetry, chronoamperometry, impedance change on nanopillared surface and compared their electrochemistry behavior on planar surfaces.


    [1] Zou YS, Yang Y, Zhou YL, et al. (2011) Surface Nanostructuring of Boron-Doped Diamond Films and Their Electrochemical Performance. J Nanosci Nanotechno 11: 7914–7919. doi: 10.1166/jnn.2011.4742
    [2] Yang MH, Hong SB, Yoon JH, et al. (2016) Fabrication of Flexible, Redoxable, and Conductive Nanopillar Arrays with Enhanced Electrochemical Performance. ACS Appl Mater Inter 8: 22220–22226. doi: 10.1021/acsami.6b06579
    [3] Shin C, Shin W, Hong HG (2007) Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor. Electrochim Acta 53: 720–728. doi: 10.1016/j.electacta.2007.07.040
    [4] Anandan V, Rao YL, Zhang G (2006) Nanopillar array structures for enhancing biosensing performance. Int J Nanomed 1: 73–79.
    [5] Schröper F, Brüggemann D, Mourzina Y, et al. (2008) Analyzing the electroactive surface of gold nanopillars by electrochemical methods for electrode miniaturization. Electrochim Acta 53: 6265–6272. doi: 10.1016/j.electacta.2008.03.068
    [6] Driskill-Smith A, Hasko D, Ahmed H (2000) Quantum interference in a vacuum nanotriode. J Vac Sci Technol B 18: 3481–3487. doi: 10.1116/1.1314388
    [7] Lewis PA, Alphenaar BW, Ahmed H (2001) Measurements of geometric enhancement factors for silicon nanopillar cathodes using a scanning tunneling microscope. Appl Phys Lett 79: 1348–1350. doi: 10.1063/1.1396821
    [8] Valsesia A, Lisboa P, Colpo P, et al. (2006) Fabrication of Polypyrrole-Based Nanoelectrode Arrays by Colloidal Lithography. Anal Chem 78: 7588–7591. doi: 10.1021/ac0609172
    [9] Ananadan A, Gangadharan R, Zhang G (2009) Role of SAM Chain Length in Enhancing the Sensitivity of Nanopillar Modified Electrodes for Glucose Detection. Sensors 9: 1295–1305. doi: 10.3390/s90301295
    [10] Leprince L, Dogimont A, Magnin D, et al. (2010) Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes. J Mater Sci 21: 925–930.
    [11] Xie C, Lin Z, Hanson L, et al. (2012) Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol 7: 185–190. doi: 10.1038/nnano.2012.8
    [12] Gardnera CJ, Trisnadia J, Kima TK, et al. (2014) Controlled metallic nanopillars for low impedance biomedical electrode. Acta Biomater 10: 2296–2303. doi: 10.1016/j.actbio.2013.12.046
    [13] Sanetra N, Feig V, Volfrum B, et al. (2011) Low impedance surface coatings via nanopillars and conductive polymers. Phys Status Solidi A 208: 1284–1289. doi: 10.1002/pssa.201001215
    [14] Anandan V, Rao YL, Zhang G (2005) Nanopillar Arrays with Superior Mechanical Strength and Optimal Spacing For High Sensitivity Biosensors. NSTI-Nanotech 3: 217–220.
    [15] Lee S, McDowell MT, Chooi JW, et al. (2011) Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation. Nano Lett 11: 3034–3039. doi: 10.1021/nl201787r
  • This article has been cited by:

    1. George Tsekenis, Marianneza Chatzipetrou, Maria Massaouti, Ioanna Zergioti, Comparative Assessment of Affinity-Based Techniques for Oriented Antibody Immobilization towards Immunosensor Performance Optimization, 2019, 2019, 1687-725X, 1, 10.1155/2019/6754398
    2. Dana Mackey, Eilís Kelly, Robert Nooney, Richard O'Kennedy, Direct immunoassays and their performance – theoretical modelling of the effects of antibody orientation and associated kinetics, 2018, 10, 1757-9694, 598, 10.1039/C8IB00077H
    3. Dana Mackey, Eilis Kelly, Robert Nooney, 2017, Chapter 103, 978-3-319-63081-6, 687, 10.1007/978-3-319-63082-3_103
    4. Lewis Roberts, Thom Griffith, Alan Champneys, Martina Piano, Janice Kiely, Richard Luxton, Mathematical modelling of a magnetic immunoassay, 2017, 82, 0272-4960, 1253, 10.1093/imamat/hxx034
    5. Elizabeth A. Campbell, Katily Ramirez, Meghana Holegadde, Nayana Yeshlur, Akram Khaja, Todd A. Sulchek, Tuning Antibody Presentation to Enhance T-Cell Activation for Downstream Cytotoxicity, 2021, 0743-7463, 10.1021/acs.langmuir.0c03203
    6. Tamás Pfeil, Blanka Herbály, A linear model for polyclonal antibody–antigen reactions, 2022, 198, 03784754, 20, 10.1016/j.matcom.2022.02.004
    7. Jianguo Chang, Nailong Gao, Peng Dai, Ziming Zhu, Hui You, Wei Han, Lu Li, Facile engineered polymeric microdevice via co-coupling of phenylboronic acid and Protein A for oriented antibody immobilization enables substantial signal enhancement for an enhanced fluorescence immunoassay, 2021, 346, 09254005, 130444, 10.1016/j.snb.2021.130444
    8. Hamid Aghamohammadi, Seied Ali Hosseini, Sanjana Srikant, Alexander Wong, Mahla Poudineh, Computational and Experimental Model to Study Immunobead-Based Assays in Microfluidic Mixing Platforms, 2022, 94, 0003-2700, 2087, 10.1021/acs.analchem.1c04228
    9. Jiewen Chen, Guangshuai Yao, Chundong Huang, Qidong Shen, Jian Miao, Lingyun Jia, Biparatopic Nanobody-Based Immunosorbent for the Highly Selective Elimination of Tumor Necrosis Factor-α, 2024, 2373-9878, 10.1021/acsbiomaterials.3c01765
    10. Song Liu, Xiaolu Li, Huyang Gao, Jing Chen, Hongfeng Jiang, Progress in Aptamer Research and Future Applications, 2025, 2191-1363, 10.1002/open.202400463
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5396) PDF downloads(930) Cited by(5)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog